Mechanical Properties and Acoustic Emission Characteristics of Granite under Different Unloading Rates of Confining Pressures
-
摘要: 为了研究不同卸围压速率下花岗岩的力学性质,利用RMT-150B岩石力学试验系统对花岗岩试样进行恒轴压卸围压应力路径试验。试验结果表明:相同的初始围压下,随着卸围压速率增大,岩样的延性减小,表现为脆性破坏。卸围压速率越大,卸围压阶段的应变率越高,但总变形量小;当卸围压的速率相同时,初始围压越高,卸围压阶段岩样的应变率和总变形量越大。采用Mogi-Coulomb强度准则对试验结果进行拟合,结果显示:卸围压速率对花岗岩的黏聚力有劣化作用,对岩石的内摩擦角有强化作用;卸围压速率越小,振铃计数的活跃期越长,表明在低卸围压速率下,花岗岩岩样内部损伤发展缓慢且完全。Abstract: In order to study the mechanical properties of granite under different unloading confining pressure rates, tests for the granite unloading confining pressure stress path under constant axial pressure were conducted via RMT-150B rock mechanics test system. The results show that: under the same initial confining pressure, the ductility of rock sample gets decreased with the increase of unloading confining pressure rate, which is characterized by brittle failure. The higher the unloading confining pressure rate is, the greater the strain rate is in the duration of confining pressure unloading, but the total deformation keeps small. Under the same unloading rate, the higher the initial confining pressure is, the greater the strain rate as well as the total deformation is. Then using Mogi-Coulomb intensity criterion to fit the test results, it is concluded that the unloading confining pressure rate degrades the cohesion of granite and strengthens the internal friction angle of rock; the smaller the unloading confining pressure rate is, the longer the active period of ringing count is, indicating a slow but complete development of the internal damage in granite samples under low confining pressure release rate.
-
表 1 两种强度准则的线性拟合结果
Table 1. Linear fitting results of two strength criteria
Condition v/(MPa·s−1) Mohr-Coulomb criteria Mogi-Coulomb criteria $\xi $ $\sigma\rm{_c }$ R2 a b R2 Triaxial compression 8.749 186.48 0.900 47.13 0.54 0.977 Unloading confining pressure 0.002 7.771 135.54 0.848 13.01 0.74 0.990 0.02 6.581 147.51 0.943 17.71 0.80 0.995 0.2 5.641 170.58 0.966 24.17 0.66 0.999 -
[1] 冯夏庭, 肖亚勋, 丰光亮, 等. 岩爆孕育过程研究 [J]. 岩石力学与工程学报, 2019, 38(4): 649–673. doi: 10.13722/j.cnki.jrme.2019.0103FENG X T, XIAO Y X, FENG G L, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. doi: 10.13722/j.cnki.jrme.2019.0103 [2] 尤明庆. 岩石的力学性质 [M]. 北京: 地质出版社, 2007.YOU M Q. Mechanical properties of rocks [M]. Beijing: Geological Publishing House, 2007. [3] 刘之喜. 高围压下砂岩循环加-卸载损伤本构及损伤阈值 [J]. 高压物理学报, 2020, 34(4): 044203. doi: 10.11858/gywlxb.20190809LIU Z X. Damage constitutive of cyclic loading and damage threshold of rock under high confining pressure [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044203. doi: 10.11858/gywlxb.20190809 [4] 谢红强, 何江达, 徐进. 岩石加卸载变形特性及力学参数试验研究 [J]. 岩土工程学报, 2003, 25(3): 336–338. doi: 10.3321/j.issn:1000-4548.2003.03.018XIE H Q, HE J D, XU J. Deformation characterslics of rock under loading and unloading conditions and experimental study of mechanical parameters [J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 336–338. doi: 10.3321/j.issn:1000-4548.2003.03.018 [5] 王光勇, 余锐, 马东方, 等. 饱水细砂岩动态抗拉与抗压强度试验对比研究 [J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857WANG G Y, YU R, MA D F, et al. Comparative study on dynamic tensile and compressivestrength of the saturated fine sandstone [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857 [6] MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643–659. doi: 10.1016/0148-9062(94)90005-1 [7] 邱士利, 冯夏庭, 张传庆, 等. 不同卸围压速率下深埋大理岩卸荷力学特性试验研究 [J]. 岩石力学与工程学报, 2010, 29(9): 1807–1817.QIU S L, FENG X T, ZHANG C Q, et al. Experimental research on mechanical properties of deep-buried marble under different unloading rates of confining pressures [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9): 1807–1817. [8] SWANSSON S R, BROWN W S. An observation of loading path independence of fracture in rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1971, 8(3): 277–278. doi: 10.1016/0148-9062(71)90023-4 [9] HUANG X, LIU Q S, LIU B, et al. Experimental study on the dilatancy and fracturing behavior of soft rock under unloading conditions [J]. International Journal of Civil Engineering, 2017, 15(6): 921–948. doi: 10.1007/s40999-016-0144-9 [10] 黄润秋, 黄达. 卸荷条件下花岗岩力学特性试验研究 [J]. 岩石力学与工程学报, 2008, 27(11): 2205–2213. doi: 10.3321/j.issn:1000-6915.2008.11.005HUANG R Q, HUANG D. Experimental research on mechanical properties of granites under unloading condition [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2205–2213. doi: 10.3321/j.issn:1000-6915.2008.11.005 [11] 张凯, 周辉, 潘鹏志, 等. 不同卸荷速率下岩石强度特性研究 [J]. 岩土力学, 2010, 31(7): 2072–2078. doi: 10.3969/j.issn.1000-7598.2010.07.009ZHANG K, ZHOU H, PAN P Z, et al. Characteristics of strength of rocks under different unloading rates [J]. Rock and Soil Mechanics, 2010, 31(7): 2072–2078. doi: 10.3969/j.issn.1000-7598.2010.07.009 [12] LI J Z, LIN F, LIU H F, et al. Triaxial experimental study on changes in the mechanical properties of rocks under different rates of confining pressures unloading [J]. Soil Mechanics and Foundation Engineering, 2019, 56(4): 246–252. doi: 10.1007/s11204-019-09598-3 [13] 国家质量技术监督局, 中华人民共和国建设部. 工程岩体试验方法标准: GB/T50266—1999 [S]. 北京: 中国标准出版社, 1999.State Bureau of Quality and Technical Supervision, Ministry of Construction of the People's Republic of China.Standard for tests method of engineering rock massas : GB/T50266—1999 [S]. Beijing: Standards Press of China, 1999. [14] 江权, 冯夏庭, 李邵军, 等. 高应力下大型硬岩地下洞室群稳定性设计优化的裂化-抑制法及其应用 [J]. 岩石力学与工程学报, 2019, 38(6): 1081–1101. doi: 10.13722/j.cnki.jrme.2018.1147JIANG Q, FENG X T, LI S J, et al. Cracking-restraint design method for large underground caverns with hard rock under high geostress condition and its practical application [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1081–1101. doi: 10.13722/j.cnki.jrme.2018.1147 [15] 郭佳奇, 刘希亮, 乔春生. 自然与饱水状态下岩溶灰岩力学性质及能量机制试验研究 [J]. 岩石力学与工程学报, 2014, 33(2): 296–308.GUO J Q, LIU X L, QIAO C S. Experimental study of mechanical properties and energy mechanism of karst limestone under natural and saturated states [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2): 296–308. [16] AL-AJMI A M, ZIMMERMAN R W. Relation between the Mogi and the Coulomb failure criteria [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(3): 431–439. doi: 10.1016/j.ijrmms.2004.11.004 [17] 罗吉安, 刘丰茂, 刘之喜, 等. 基于八面体理论的岩石循环加-卸载本构模型及修正 [J]. 高压物理学报, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797LUO J A, LIU F M, LIU Z X, et al. Study and correction of cyclic loading-unloading constitutive model of rock based on octahedral theory [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797