不同应变率下两种岩石的压缩破碎特征试验研究

卢振宇 李文彬 姚文进 彭航

卢振宇, 李文彬, 姚文进, 彭航. 不同应变率下两种岩石的压缩破碎特征试验研究[J]. 高压物理学报, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605
引用本文: 卢振宇, 李文彬, 姚文进, 彭航. 不同应变率下两种岩石的压缩破碎特征试验研究[J]. 高压物理学报, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605
LU Zhenyu, LI Wenbin, YAO Wenjin, PENG Hang. Experimental Study on Compression and Fracture Characteristics of Two Kinds of Rocks under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605
Citation: LU Zhenyu, LI Wenbin, YAO Wenjin, PENG Hang. Experimental Study on Compression and Fracture Characteristics of Two Kinds of Rocks under Different Strain Rates[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014101. doi: 10.11858/gywlxb.20200605

不同应变率下两种岩石的压缩破碎特征试验研究

doi: 10.11858/gywlxb.20200605
基金项目: 国家自然科学基金(11972018)
详细信息
    作者简介:

    卢振宇(1996-),男,硕士研究生,主要从事岩石侵彻动力学研究. E-mail:lzy199639@163.com

    通讯作者:

    李文彬(1965-),男,博士,教授,主要从事弹药总体技术研究. E-mail:lwb2000cn@njust.edu.cn

  • 中图分类号: O347.1; TD326

Experimental Study on Compression and Fracture Characteristics of Two Kinds of Rocks under Different Strain Rates

  • 摘要: 为了研究不同岩石在不同应变率下压缩时裂纹的产生规律及破坏模式,将石灰岩和红砂岩制成试件,研究其在不同应变率和受力模式下裂纹的形成模式。开展了两种岩石的准静态压缩和动态压缩试验,采用高速摄影机记录了裂纹的产生和破坏模式。对两种岩石试件的裂纹形态进行对比,基于岩石的物理性质、受力状态、能量演化分析,得到了在不同应变率下压缩时产生差异性的原因。结果表明:准静态压缩下岩石试件受压的破坏模式也会因应变率的不同而存在差异,并且破坏模式的差异对岩石试件的抗压强度将产生显著的影响;从能量演化的角度分析,入射能量的大小将会决定岩石试样动态抗压强度曲线是否出现起伏;动态压缩时,裂纹的周向扩展速度与岩石抗压强度呈正相关。

     

  • 图  岩石试件及岩石微观结构

    Figure  1.  Rock specimens and rock microstructure

    图  准静态试验示意图

    Figure  2.  Schematic diagram of quasi-static test

    图  红砂岩和石灰岩在两种应变率下的真实应力-应变曲线

    Figure  3.  True stress-strain curves of red sandstone and limestone at two strain rates

    图  准静态单轴压缩下试件的破坏模式

    Figure  4.  Failure modes of the specimen under quasi-static uniaxial compression

    图  纺锤形子弹(单位:mm)

    Figure  5.  Spindle bullet (Unit: mm)

    图  整形后入射波的波形

    Figure  6.  Waveform of incident wave after shaping

    图  红砂岩和石灰岩在动态压缩下的应力-应变曲线

    Figure  7.  Stress-strain curves of red sandstone and limestone under dynamic compression

    图  红砂岩在两种应变率下的破坏模式

    Figure  8.  Failure modes of red sandstone at two strain rates

    图  石灰岩在两种应变率下的破坏模式

    Figure  9.  Failure modes of limestone at two strain rates

    图  10  石灰岩在动态压缩下的破坏模式($\dot{\varepsilon }=429\;{\mathrm{s}}^{-1}$

    Figure  10.  Failure mode of limestone under dynamic compression ($\dot{\varepsilon }=429\;{\mathrm{s}}^{-1}$)

    图  11  红砂岩在动态压缩下的破坏模式($\dot{\varepsilon }=312\;{\mathrm{s}}^{-1}$

    Figure  11.  Failure mode of red sandstone under dynamic compression ($\dot{\varepsilon }=312\;{\mathrm{s}}^{-1}$)

    图  12  两种岩石强度与应变能的对比

    Figure  12.  Comparison of strength and strain energy between red sandstone and limestone

    图  13  动态压缩下岩石裂纹周向扩展速度对比

    Figure  13.  Comparison of circumferential velocity of rock cracks under dynamic compression

    表  1  动态压缩试验分组

    Table  1.   Runs of dynamic compression tests

    Rock materialTest No.Total number of trialsBullet speed/(m·s−1)Rock materialTest No.Total number of trialsBullet speed/(m·s−1)
    Red sandstoneH-1314.8LimestoneS-1316.7
    H-2316.5S-2318.6
    下载: 导出CSV
  • [1] 朱永建, 任恒, 王平, 等. 损伤石灰岩单轴再加载力学特性及破坏机理 [J/OL]. 哈尔滨工业大学学报. (2020−06−22) [2020−08−20]. https://kns.cnki.net/KCMS/detail/23.1235.T.20200622.0849.002.html.

    ZHU Y J, REN H, WANG P, et al. Study on mechanical properties and failure mechanism of damaged limestone under uniaxial reloading [J/OL]. Journal of Harbin Institute of Technology. (2020−06−22) [2020−08−20]. https://kns.cnki.net/KCMS/detail/23.1235.T.20200622.0849.002.html.
    [2] 李海琪, 冯子军. 不同加载方式及速率下石灰岩三轴力学特性研究 [J]. 矿业研究与开发, 2020, 40(4): 52–56.

    LI H Q, FENG Z J. Study on triaxial mechanical properties of limestone under different loading modes and loading rates [J]. Mining Research and Development, 2020, 40(4): 52–56.
    [3] 杜晶. 不同长径比下岩石冲击动力学特性研究[D]. 长沙: 中南大学, 2011.

    DU J. Size effect on the dynamic mechanical properties under impact loads of rock [D]. Changsha: Central South University, 2011.
    [4] 高富强, 杨军, 刘永茜, 等. 岩石准静态和动态冲击试验及尺寸效应研究 [J]. 煤炭科学技术, 2009, 37(4): 19–22, 68.

    GAO F Q, YANG J, LIU Y Q, et al. Research on rock parastatic and dynamic impact test and size effect [J]. Coal Science and Technology, 2009, 37(4): 19–22, 68.
    [5] 洪亮, 李夕兵, 马春德, 等. 岩石动态强度及其应变率灵敏性的尺寸效应研究 [J]. 岩石力学与工程学报, 2008, 27(3): 526–533. doi: 10.3321/j.issn:1000-6915.2008.03.012

    HONG L, LI X B, MA C D, et al. Study on size effect of rock dynamic strength and strain rate sensitivity [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3): 526–533. doi: 10.3321/j.issn:1000-6915.2008.03.012
    [6] 平琦, 张号, 苏海鹏. 不同长度石灰岩动态压缩力学性质试验研究 [J]. 岩石力学与工程学报, 2018, 37(Suppl 2): 3891–3897.

    PING Q, ZHANG H, SU H P. Study on dynamic compression mechanical properties of limestone with different lengths [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(Suppl 2): 3891–3897.
    [7] 陈思顺. 岩石单轴压缩条件下的尺寸效应及声发射特征[D]. 太原: 太原理工大学, 2019.

    CHEN S S. Size effect and acoustic emission characteristics of rock under uniaxial compression [D]. Taiyuan: Taiyuan University of Technology, 2019.
    [8] HOERTH T, BAGUSAT F, HIERMAIER S. Hugoniot data of Seeberger sandstone up to 7 GPa [J]. International Journal of Impact Engineering, 2017, 99: 122–130. doi: 10.1016/j.ijimpeng.2016.08.003
    [9] BARANOWSKI P, KUCEWICZ M, GIELETA R, et al. Fracture and fragmentation of dolomite rock using the JH-2 constitutive model: parameter determination, experiments and simulations [J]. International Journal of Impact Engineering, 2020, 140: 103543. doi: 10.1016/j.ijimpeng.2020.103543
    [10] 高阳, 冯子军. 真三轴应力状态下含预裂缝石灰岩静态破碎裂纹演化规律 [J]. 矿业研究与开发, 2020, 40(1): 12–15. doi: 10.13827/j.cnki.kyyk.2020.01.003

    GAO Y, FENG Z J. Evolution law of static fracture crack of limestone with pre-splitting crack under true triaxial stress state [J]. Mining Research and Development, 2020, 40(1): 12–15. doi: 10.13827/j.cnki.kyyk.2020.01.003
    [11] 张盛, 王龙飞, 常旭, 等. 中心直裂纹半圆盘试样的石灰岩断裂韧度尺寸效应试验研究 [J]. 岩土力学, 2019, 40(5): 1740–1749, 1760. doi: 10.16285/j.rsm.2017.2555

    ZHANG S, WANG L F, CHANG X, et al. Experimental study of size effect of fracture toughness of limestone using the notched semi-circular bend samples [J]. Rock and Soil Mechanics, 2019, 40(5): 1740–1749, 1760. doi: 10.16285/j.rsm.2017.2555
    [12] 程浩. 塔里木顺托果勒地区奥陶系石灰岩岩相与地球化学特征[D]. 西安: 西安石油大学, 2020.

    CHENG H. Lithofacies and geochemical characteristics of Ordovician Limestone in Shuntogol Region, Tarim [D]. Xi’an: Xi’an Shiyou University, 2020.
    [13] 冯春迪, 黄仁东. 红砂岩中矿物颗粒的塑性应变分析 [J]. 黄金科学技术, 2019, 27(4): 557–564. doi: 10.11872/j.issn.1005-2518.2019.04.557

    FENG C D, HUANG R D. Plastic strain analysis of mineral particles in red sandstone [J]. Gold Science and Technology, 2019, 27(4): 557–564. doi: 10.11872/j.issn.1005-2518.2019.04.557
    [14] 王光勇, 余锐, 马东方, 等. 饱水细砂岩动态抗拉与抗压强度试验对比研究 [J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857

    WANG G Y, YU R, MA D F, et al. Comparative study on dynamic tensile and compressive strength of the saturated fine sandstone [J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
    [15] 方兆惠. 动静组合加载下石灰岩力学性能试验研究[D]. 淮南: 安徽理工大学, 2019.

    FANG Z H. Experimental study on mechanical properties of limestone under dynamic and static combined loading [D]. Huainan: Anhui University of Science and Technology, 2019.
    [16] 岩石的压缩强度试验方法: KS E3033−2001 [S]. 韩国技术标准局, 2001.
    [17] 吴秋红, 赵伏军, 李夕兵, 等. 不同截面形状砂岩试样的力学特性试验研究 [J]. 地下空间与工程学报, 2019, 15(2): 428–434.

    WU Q H, ZHAO F J, LI X B, et al. Experimental study on mechanical properties of sandstone with different cross-sectional shapes [J]. Chinese Journal of Underground Space and Engineering, 2019, 15(2): 428–434.
    [18] 周子龙, 李夕兵, 岩小明. 岩石SHPB测试中试样恒应变率变形的加载条件 [J]. 岩石力学与工程学报, 2009, 28(12): 2445–2452. doi: 10.3321/j.issn:1000-6915.2009.12.009

    ZHOU Z L, LI X B, SHI X M. Loading condition for specimen deformation at constant strain rate in SHPB test of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(12): 2445–2452. doi: 10.3321/j.issn:1000-6915.2009.12.009
    [19] 金解放, 李夕兵, 王观石, 等. 循环冲击载荷作用下砂岩破坏模式及其机理 [J]. 中南大学学报(自然科学版), 2012, 43(4): 1453–1461.

    JIN J F, LI X B, WANG G S, et al. Failure modes and mechanisms of sandstone under cyclic impact loadings [J]. Journal of Central South University (Science and Technology), 2012, 43(4): 1453–1461.
    [20] 陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究 [J]. 岩石力学与工程学报, 2019, 38(11): 2172–2181. doi: 10.13722/j.cnki.jrme.2019.0319

    TAO M, WANG J, LI Z W, et al. Meso-and micro-experimental research on the fracture of granite spallation under impact loads [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2172–2181. doi: 10.13722/j.cnki.jrme.2019.0319
    [21] 杨永杰, 王德超, 郭明福, 等. 基于三轴压缩声发射试验的岩石损伤特征研究 [J]. 岩石力学与工程学报, 2014, 33(1): 98–104.

    YANG Y J, WANG D C, GUO M F, et al. Study of rock damage characteristics based on acoustic emission tests under triaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 98–104.
    [22] 刘刚, 李英明, 肖福坤, 等. 单、三轴及孔隙水作用下黄砂岩破坏力学行为及损伤演化规律研究 [J]. 岩石力学与工程学报, 2019, 38(Suppl 2): 3532–3544.

    LIU G, LI Y M, XIAO F K, et al. Study on failure mechanics behavior and damage evolution law of yellow sandstone under uniaxial triaxial and pore water action [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(Suppl 2): 3532–3544.
    [23] 张培森, 侯季群, 赵成业, 等. 不同围压不同损伤程度红砂岩渗流特性试验研究[J/OL]. 岩石力学与工程学报. (2020−08−07)[2020−09−01]. https://doi.org/10.13722/j.cnki.jrme.2020.0266.

    ZHANG P S, HOU J Q, ZHAO C Y, et al. Experimental study on seepage characteristics of red sandstone with different confining pressure and different damage degree [J]. Chinese Journal of Rock Mechanics and Engineering. (2020−08−07) [2020−09−01]. https://doi.org/10.13722/j.cnki.jrme.2020.0266.
    [24] 张志镇, 高峰. 单轴压缩下红砂岩能量演化试验研究 [J]. 岩石力学与工程学报, 2012, 31(5): 953–962. doi: 10.3969/j.issn.1000-6915.2012.05.012

    ZHANG Z Z, GAO F. Experimental research on energy evolution of red sandstone samples under uniaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(5): 953–962. doi: 10.3969/j.issn.1000-6915.2012.05.012
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  5867
  • HTML全文浏览量:  2803
  • PDF下载量:  57
出版历程
  • 收稿日期:  2020-08-20
  • 修回日期:  2020-09-02

目录

    /

    返回文章
    返回