烧结压力对碳化钽陶瓷维氏硬度的影响

王菊巍 张振钢 梁浩 陈海花

王菊巍, 张振钢, 梁浩, 陈海花. 烧结压力对碳化钽陶瓷维氏硬度的影响[J]. 高压物理学报, 2021, 35(2): 021101. doi: 10.11858/gywlxb.20200600
引用本文: 王菊巍, 张振钢, 梁浩, 陈海花. 烧结压力对碳化钽陶瓷维氏硬度的影响[J]. 高压物理学报, 2021, 35(2): 021101. doi: 10.11858/gywlxb.20200600
WANG Juwei, ZHANG Zhengang, LIANG Hao, CHEN Haihua. Effects of Sintering Pressure on the Vickers Hardness of TaC[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 021101. doi: 10.11858/gywlxb.20200600
Citation: WANG Juwei, ZHANG Zhengang, LIANG Hao, CHEN Haihua. Effects of Sintering Pressure on the Vickers Hardness of TaC[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 021101. doi: 10.11858/gywlxb.20200600

烧结压力对碳化钽陶瓷维氏硬度的影响

doi: 10.11858/gywlxb.20200600
基金项目: 国家自然科学基金(11604175)
详细信息
    作者简介:

    王菊巍(1982-),女,硕士,讲师,主要从事物理电子学研究. E-mail:wjw-567@163.com

    通讯作者:

    陈海花(1982-),女,博士,教授,主要从事高压凝聚态物理研究. E-mail:chenghaihua06@163.com

  • 中图分类号: O521.2

Effects of Sintering Pressure on the Vickers Hardness of TaC

  • 摘要: 为了探究烧结压力对不同晶粒尺寸碳化钽(TaC)力学性能的影响,通过高温高压技术对纳米、微米尺寸TaC粉末进行高温高压烧结,制备不同烧结条件下的块状TaC陶瓷。利用X射线衍射等表征方法对烧结样品的物相、元素分布、压痕形态进行表征,结果表明:TaC在烧结过程中物相稳定,且无杂质渗入。利用维氏硬度计对不同烧结压力(3.0、4.0和5.5 GPa)条件下的3种陶瓷样品进行维氏硬度测试,并进行微观结构分析,结果表明:随着烧结压力由3.0 GPa提升到5.5 GPa,微米尺寸TaC的维氏硬度(21.0 GPa)优于3.0、4.0 GPa下的纳米尺寸TaC维氏硬度(17.5、19.2 GPa)。此外,研究发现,测试维氏硬度时,3.0 kg应用载荷对测试TaC维氏硬度更加精确。研究结果对结构陶瓷烧结和超高温陶瓷硬度研究具有指导意义。

     

  • 图  (a)1500 ℃、1300 ℃烧结温度下制备的Nano-3.0-TaC和Nano-4.0-TaC的XRD图谱,(b)不同烧结温度下Micr-5.5-TaC的XRD图谱

    Figure  1.  (a) XRD patterns of Nano-3.0-TaC, Nano-4.0-TaC ceramics at 1500 ℃ and 1300 ℃, (b) XRD patterns of Micr-5.5-TaC ceramics at the different sintered temperature

    图  1300 ℃烧结下的Micr-5.5-TaC的EDS图谱

    Figure  2.  EDS analysis of Micr-5.5-TaC sintered at 1300 ℃

    图  最佳烧结温度下样品断裂面SEM图像和在3.0 kg载荷下的压痕光学显微镜照片

    Figure  3.  SEM pictures of the fracture surface of the samples at the best sintering temperature and optical microscope pictures of indentation at 3.0 kg force

    图  (a) 3.0 kg载荷下Micr-5.5-TaC的压痕SEM图像;(b)Micr-5.5-TaC在不同载荷下的压痕变化

    Figure  4.  (a) SEM picture of indentation of Micr-5.5-TaC at 3.0 kg; (b) change of indentation of Micr-5.5-TaC at various forces

    图  在不同烧结温度和压力下Nano-3.0-TaC、Nano-4.0-TaC和Micr-5.5-TaC的维氏硬度变化

    Figure  5.  The evolution of Vickers hardness of Nano-3.0-TaC, Nano-4.0-TaC, and Micr-5.5-TaC with the sintering temperatures under various pressures

    表  1  实验与其他过渡金属碳化物的机械性能

    Table  1.   Mechanical parameters of TaC and other TMCs

    SampleRelative
    density/%
    Hardness/GPaYoung’s modulus/GPaTechniquesRef.
    Nano-3.0-TaC92.017.5HPHTThis work
    Nano-4.0-TaC96.019.2HPHTThis work
    Micr-5.5-TaC97.721.0457HPHTThis work
    NbC98.021.6HFIHS[20]
    HfC98.018.8455SPS[21]
    VC26.0PLD[22]
    WC98.528.0HFIHS[6]
    下载: 导出CSV
  • [1] CHENG Q, TANG S, LIU C, et al. Preparation and electrochemical performance of Li4- xMgxTi5O12 as anode materials for lithium-ion battery [J]. Journal of Alloys & Compounds, 2017, 722: 229–234.
    [2] SUN W, KUANG X, LIANG H, et al. Mechanical properties of tantalum carbide from high-pressure/high-temperature synthesis and first-principles calculations [J]. Physical Chemistry Chemical Physics, 2020, 22(9): 5018–5023. doi: 10.1039/C9CP06819H
    [3] CASTLE E, CSANÁDI T, GRASSO S, et al. Processing and properties of high-entropy ultra-high temperature carbides [J]. Scientific Reports, 2018, 8: 8609. doi: 10.1038/s41598-018-26827-1
    [4] ZHAO E, MENG J, MA Y, et al. Phase stability and mechanical properties of tungsten borides from first principles calculations [J]. Physical Chemistry Chemical Physics, 2010, 12(40): 13158–13165. doi: 10.1039/c004122j
    [5] ZHANG C, GUPTA A, SEAL S, et al. Solid solution synthesis of tantalum carbide-hafnium carbide by spark plasma sintering [J]. Journal of the American Ceramic Society, 2017, 100(5): 1853–1862. doi: 10.1111/jace.14778
    [6] KIM H, YOON J, DOH J, et al. Rapid sintering process and mechanical properties of binderless ultra fine tungsten carbide [J]. Materials Science and Engineering: A, 2006, 435: 717–724.
    [7] CHEN H H, BI Y, CHENG Y, et al. Elastic stability and electronic structure of tantalum boride investigated via first-principles density functional calculations [J]. Journal of Physics and Chemistry of Solids, 2012, 73(10): 1197–1202. doi: 10.1016/j.jpcs.2012.05.007
    [8] GLECHNER T, MAYRHOFER P H, HOLEC D, et al. Tuning structure and mechanical properties of Ta-C coatings by N-alloying and vacancy population [J]. Scientific Reports, 2018, 8: 17669. doi: 10.1038/s41598-018-35870-x
    [9] ZHANG Z G, LIANG H, CHEN H, et al. Exploring physical properties of tantalum carbide at high pressure and temperature [J]. Inorganic Chemistry, 2020, 59(3): 1848–1852. doi: 10.1021/acs.inorgchem.9b03055
    [10] LIN Z J, ZHANG J Z, LI B S, et al. Superhard diamond/tungsten carbide nanocomposites [J]. Applied Physics Letters, 2011, 98(12): 121914. doi: 10.1063/1.3570645
    [11] CEDILLOS-BARRAZA O, GRASSO S, AL NASIRI N, et al. Sintering behaviour, solid solution formation and characterisation of TaC, HfC and TaC–HfC fabricated by spark plasma sintering [J]. Journal of the European Ceramic Society, 2016, 36(7): 1539–1548. doi: 10.1016/j.jeurceramsoc.2016.02.009
    [12] ZHANG X, HILMAS G E, FAHRENHOLTZ W G. Densification and mechanical properties of TaC-based ceramics [J]. Materials Science and Engineering: A, 2009, 501(1/2): 37–43. doi: 10.1016/j.msea.2008.09.024
    [13] CHEN C, HE D, KOU Z, et al. B6O-based composite to rival polycrystalline cubic boron nitride [J]. Advanced Materials, 2007, 19(23): 4288–4291. doi: 10.1002/adma.200700836
    [14] LIANG H, PENG F, CHEN C, et al. High-pressure sintering of bulk MoSi2: microstructural, physical properties and mechanical behavior [J]. Materials Science and Engineering: A, 2018, 711: 389–396. doi: 10.1016/j.msea.2017.11.016
    [15] CHEN H, LIANG H, LIU L, et al. Hardness measurements for high-pressure prepared TaB and nano-TaC ceramics [J]. Results in Physics, 2017, 7: 3859–3862. doi: 10.1016/j.rinp.2017.10.006
    [16] KIM B R, WOO K D, DOH J M, et al. Mechanical properties and rapid consolidation of binderless nanostructured tantalum carbide [J]. Ceramics International, 2009, 35(8): 3395–3400. doi: 10.1016/j.ceramint.2009.06.012
    [17] ZHANG X, HILMAS G E, FAHRENHOLTZ W G, et al. Hot pressing of tantalum carbide with and without sintering additives [J]. Journal of the American Ceramic Society, 2007, 90(2): 393–401. doi: 10.1111/j.1551-2916.2006.01416.x
    [18] CEDILLOS-BARRAZA O, MANARA D, BOBORIDIS K, et al. Investigating the highest melting temperature materials: a laser melting study of the TaC-HfC system [J]. Scientific Reports, 2016, 6(1): 1–11. doi: 10.1038/s41598-016-0001-8
    [19] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: Ⅰ, direct crack measurements [J]. Journal of the American Ceramic Society, 1981, 64(9): 533–538. doi: 10.1111/j.1151-2916.1981.tb10320.x
    [20] KIM B R, WOO K D, YOON J K, et al. Mechanical properties and rapid consolidation of binderless niobium carbide [J]. Journal of Alloys and Compounds, 2009, 481(1/2): 573–576.
    [21] SCITI D, GUICCIARDI S, NYGREN M. Densification and mechanical behavior of HfC and HfB2 fabricated by spark plasma sintering [J]. Journal of the American Ceramic Society, 2008, 91(5): 1433–1440. doi: 10.1111/j.1551-2916.2007.02248.x
    [22] KRZANOWSKI J E, LEUCHTNER R E. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide [J]. Journal of the American Ceramic Society, 1997, 80(5): 1277–1280.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4842
  • HTML全文浏览量:  1910
  • PDF下载量:  43
出版历程
  • 收稿日期:  2020-08-03
  • 修回日期:  2020-08-26

目录

    /

    返回文章
    返回