水下多点爆炸条件下的冲击波载荷特性

余俊 盛振新 毛海斌 王海坤

余俊, 盛振新, 毛海斌, 王海坤. 水下多点爆炸条件下的冲击波载荷特性[J]. 高压物理学报, 2021, 35(2): 025101. doi: 10.11858/gywlxb.20200597
引用本文: 余俊, 盛振新, 毛海斌, 王海坤. 水下多点爆炸条件下的冲击波载荷特性[J]. 高压物理学报, 2021, 35(2): 025101. doi: 10.11858/gywlxb.20200597
YU Jun, SHENG Zhenxin, MAO Haibin, WANG Haikun. Load Characteristics of Shock Wave under Condition of Multiple Underwater Explosion (UNDEX)[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025101. doi: 10.11858/gywlxb.20200597
Citation: YU Jun, SHENG Zhenxin, MAO Haibin, WANG Haikun. Load Characteristics of Shock Wave under Condition of Multiple Underwater Explosion (UNDEX)[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 025101. doi: 10.11858/gywlxb.20200597

水下多点爆炸条件下的冲击波载荷特性

doi: 10.11858/gywlxb.20200597
详细信息
    作者简介:

    余 俊(1984-),男,硕士,高级工程师,主要从事舰艇抗爆抗冲击防护研究. E-mail:feiyue617@163.com

  • 中图分类号: O383.1

Load Characteristics of Shock Wave under Condition of Multiple Underwater Explosion (UNDEX)

  • 摘要: 针对水下多爆源起爆的实战背景,开展了两点同时起爆条件下冲击波载荷特性的数值模拟研究。基于自研的多相可压缩流体计算程序,采用高精度的数值格式对流体控制方程进行离散求解。将数值模型计算的自由场水下爆炸的结果与理论结果比较,初步验证了数值模型计算的准确性与可靠性。利用该模型计算了典型工况下水下两点起爆工况,计算结果表明:两爆源对称面上压力相比单爆源线性叠加后的峰值压力增加12%~16%;两爆源垂直截面之间的压力存在双峰现象;而对于两垂直截面之外的测点压力也存在双峰现象,第1个峰值压力与单爆源线性叠加的峰值相等,第2个峰值压力要远低于单爆源线性叠加的峰值,峰值压力下降幅度可高达30%左右。研究结果能够为水下武器防护设计与威胁评估提供参考。

     

  • 图  0.1 kg TNT装药两测点处压力和冲量时程曲线比较

    Figure  1.  Comparison of pressure and impulse time history curves at two measuring points of 0.1 kg TNT charge

    图  1.0 kg TNT装药两测点处压力和冲量时程曲线比较

    Figure  2.  Comparison of pressure and impulse time history curves at two measuring points of 1.0 kg TNT charge

    图  双爆源测点分布

    Figure  3.  Location of measuring points of double explosion sources

    图  单爆源(a)和双爆源(b)工况下流场的演化过程(上:压力云图,下:密度云图)

    Figure  4.  Evolution of flow field under the conditions of double explosion sources (a) and single explosion source (b) (Up:pressure cloud image, down:density cloud image)

    图  测点A1A4的压力时程曲线对比

    Figure  5.  Comparison of pressure time history curves at points A1A4

    图  测点B1B2的压力曲线对比

    Figure  6.  Comparison of pressure curves at points B1 and B2

    图  测点C1C2的压力曲线比较

    Figure  7.  Comparison of pressure curves at points C1 and C2

    表  1  计算结果与由Cole经验公式得到的峰值压力对比

    Table  1.   Comparison of peak pressure between calculated results and Cole empirical formula

    TNT mass/kgPeak pressure at 6R0Peak pressure at 12R0
    Simulation/MPaTheory/MPaError/%Simulation/MPaTheory/MPaError/%
    0.1228.0239.8−4.9292.487.65.48
    1.0254.6268.1−5.0498.594.83.90
    下载: 导出CSV

    表  2  峰值压力比较

    Table  2.   Comparison of peak pressures

    Measuring
    point
    Detonation
    distance
    Peak pressure under
    double explosion/MPa
    Single detonation source
    synthetic pressure/MPa
    Error/%
    A16R0498.1444.912.0
    A28R0369.2322.414.5
    A312R0234.1196.219.3
    A420R0122.5105.915.7
    下载: 导出CSV
  • [1] 李旭东. 多点爆炸效应及其防护问题的实验与计算研究[D]. 北京: 北京大学, 2008: 5–8.

    LI X D. Experimental and computational study on the effect of multi-point explosion and its protection [D]. Beijing: Peking University, 2008: 5–8.
    [2] 张世豪, 韩晶, 王华,等. 混凝土中多点同步爆炸能量聚集效应分析 [J]. 爆破, 2014, 31(1): 19–25. doi: 10.3963/j.issn.1001-487X.2014.01.005

    ZHANG S H, HAN J, WANG H, et al. Energy gathering effect of multi-point simultaneous explosion in concrete [J]. Blasting, 2014, 31(1): 19–25. doi: 10.3963/j.issn.1001-487X.2014.01.005
    [3] 陈明生, 白春华, 李建平. 多点云雾爆炸波相互作用的数值模拟 [J]. 爆炸与冲击, 2016, 36(1): 81–86. doi: 10.11883/1001-1455(2016)01-0081-06

    CHEN M S, BAI C H, LI J P. Simulation of blast waves interaction for multiple cloud explosion [J]. Explosion and Shock Waves, 2016, 36(1): 81–86. doi: 10.11883/1001-1455(2016)01-0081-06
    [4] 翟红波, 李芝绒, 苏健军, 等. 多点同步内爆炸下典型舱室的毁伤特性 [J]. 振动与冲击, 2018, 37(2): 169–175.

    ZHAI H B, LI Z R, SU J J, et al. Damage characteristics of a typical cabin with multi-point simultaneous inner explosion [J]. Journal of Vibration and Shock, 2018, 37(2): 169–175.
    [5] 孟闻远, 郭军伟, 郭颍奎, 等. 两点爆炸冲击波对冰的破坏效应的仿真分析 [J]. 华北水利水电大学学报(自然科学版), 2014, 35(1): 22–25.

    MENG W Y, GUO J W, GUO Y K, et al. Simulation and analysis of damage effect of double explosions shock wave on the ice [J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2014, 35(1): 22–25.
    [6] COLE P. 水下爆炸 [M]. 罗耀杰, 译. 北京: 国防工业出版社, 1960: 20−23.

    COLE P. Underwater explosion [M]. Translated by LUO Y J. Beijing: National Defense Industry Press, 1960: 20−23.
    [7] 刘建湖. 舰船非接触水下爆炸动力学理论与应用[D]. 无锡: 中国船舶科学研究中心, 2002: 15−18.

    LIU J H. Applications of ship dynamic responses to non-contact underwater explosions [D]. Wuxi: China Ship Scientific Research Center, 2002: 15−18.
    [8] 胡亮亮, 黄瑞源, 李世超, 等. 水下爆炸冲击波数值仿真研究 [J]. 高压物理学报, 2020, 34(1): 015102.

    HU L L, HUANG R Y, LI S C, et al. Shock wave simulation of underwater explosion [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015102.
    [9] 刘靖晗, 唐廷, 韦灼彬, 等. 刚性柱附近浅水爆炸荷载特性研究 [J]. 高压物理学报, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704

    LIU J H, TANG T, WEI Z B, et al. Pressure characteristics of shallow water explosion near the rigid column [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704
    [10] HU J B, LI Q M, ZHANG Z H. Study on energy output characteristics calculation method of two charges’ shock wave from underwater explosion [C]//2th International Conference on Computational Intelligence and Natural Computing (CINC). Wuhan, 2010.
    [11] ALLAIRE G, CLERC S, KOKH S. A five-equation model for the simulation of interface between compressible fluids [J]. Journal of Computational Physics, 2002, 181(2): 577–616. doi: 10.1006/jcph.2002.7143
    [12] MURRONE A, GUILLARD H. A five equation reduced model for compressible two-phase flow problems [J]. Journal of Computational Physics, 2005, 202(2): 664–698. doi: 10.1016/j.jcp.2004.07.019
    [13] JOHNSEN E, COLONIUS T. Implementation of WENO schemes in compressible multicomponent flow problems [J]. Journal of Computational Physics, 2006, 219(2): 715–732. doi: 10.1016/j.jcp.2006.04.018
    [14] COCCHI J P, SAUREL R, LORAUD J C. Treatment of interface problems with Godunov-type schemes [J]. Shock Waves, 1996(5): 347–357.
    [15] TORO E F. Riemann solvers and numerical methods for fluid dynamics [M]. Berlin: Springer, 2007.
    [16] WANG C, KHOO B C. An indirect boundary element method for three-dimensional explosion bubbles [J]. Journal of Computational Physics, 2004, 194(2): 451–480. doi: 10.1016/j.jcp.2003.09.011
    [17] ZHANG S, DUNCAN J H, CHAHINE G L. The final stage of the collapse of a cavitation bubble near a rigid wall [J]. Journal of Fluid Mechanics, 1993, 257: 147–181. doi: 10.1017/S0022112093003027
    [18] 白晓征. 包含运动界面的爆炸流场数值模拟方法及其应用 [D]. 长沙: 国防科学技术大学, 2009: 4−6.

    BAI X Z. Numerical simulation method of explosion flow field including moving interface and its application [D]. Changsha: University of Defense Science and Technology, 2009: 4−6
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  4730
  • HTML全文浏览量:  1883
  • PDF下载量:  53
出版历程
  • 收稿日期:  2020-07-27
  • 修回日期:  2020-09-10

目录

    /

    返回文章
    返回