High Pressure Neutron Diffraction Technology and Applications at CMRR
-
摘要: 中国绵阳研究堆(CMRR)建有一台专门的高压中子衍射谱仪(凤凰),用于高压科学研究。对聚焦单色器和导管升级后,凤凰谱仪的束流通量大幅度提高。基于凤凰谱仪,建立并发展了一系列高压中子技术,包括:气体压腔、活塞圆筒型压腔、紧固型压腔、标准巴黎-爱丁堡压机(VX4型)、带加热和水冷系统的两面顶压机(HP3-1500)、及压机的调节与定位系统。通过对高温高压样品腔体组装的优化设计,原位中子衍射的温度和压力最高达到34 GPa和1500 ℃。建立的高压中子衍射技术已成功应用于高压溶解度测量、含能材料结构表征、高压聚合反应等方面的研究。Abstract: FENGHUANG diffractometer at CMRR is a neutron diffractometer dedicated for high pressure experiments. After updating the neutron guide and monochromator, now the neutron flux at the sample position can get increased up to 2.84×106 ns–1·cm–2.Based on the FENGHUANG diffractometer, comprehensive high pressure devices and techniques have been developed, such as gas cells, piston cylinders cell, clamp cell, PE press (VX4), opposite anvil press (HP3-1500) along with sample heating and cooling system, and the alignment system for high pressure devices. Moreover, with the modified high pressure and high temperature cell assemblies, the pressure can be up to 34 GPa while the temperature reaches 1500 ℃ at maximum in the angle-dispersive neutron diffraction. Recently, some scientific research have been performed, like the solubility of NaCl at high pressure, the intergranular strain evolution of HMX, and the pressure-induced polymerization. All these experimental experiences from FENGHUANG diffractometer could not only help to promote the development of high pressure techniques on neutron scattering facilities, but also contribute to the users for their high pressure studies.
-
Key words:
- high pressure /
- neutron diffraction /
- Paris-Edinburgh press /
- large-volume
-
表 1 凤凰谱仪主要的仪器参数
Table 1. Instrumental parameters of FENGHUANG diffractometer
Take-off-angle/(°) Wavelength/Å Scan angle range/(°) 93.8 1.5900−1.5925 −4−153 Maximum beam size/(mm × mm) Flux at sample position/(106 ns−1·cm−2) Minimum resolution/% 30 × 40 0.34−2.84 0.356−0.661 -
[1] KISI E H, HOWARD C J. Applications of neutron powder diffraction [M]. Oxford: Oxford University Press, 2008. [2] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493–532. doi: 10.1080/08957959.2011.618698 [3] GUTHRIE M. Future directions in high-pressure neutron diffraction [J]. Journal of Physics: Condensed Matter, 2015, 27(15): 153201. doi: 10.1088/0953-8984/27/15/153201 [4] KLOTZ S, BESSON J M, HAMEL G, et al. High pressure neutron diffraction using the Paris-Edinburgh cell: experimental possibilities and future prospects [J]. High Pressure Research, 1996, 14(4/5/6): 249–255. doi: 10.1080/08957959608201409 [5] LE GODEC Y, DOVE M T, REDFERN S A T, et al. Recent developments using the Paris-Edinburgh cell for neutron diffraction at high pressure and high temperature and some applications [J]. High Pressure Research, 2003, 23(3): 281–287. doi: 10.1080/0895795032000102496 [6] KLOTZ S. Techniques in high pressure neutron scattering [M]. Boca Raton, FL: CRC Press, Taylor and Francis, 2013. [7] MCWHAN D B, BLOCH D, PARISOT G. Apparatus for neutron diffraction at high pressure [J]. Review of Scientific Instruments, 1974, 45(5): 643–646. doi: 10.1063/1.1686704 [8] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600 [9] SUN G G, ZHANG C S, CHEN B, et al. A new operating neutron scattering facility CMRR in China [J]. Neutron News, 2016, 27(4): 21–26. doi: 10.1080/10448632.2016.1233018 [10] PENG M, SUN L W, CHEN L, et al. A new small-angle neutron scattering spectrometer at China Mianyang research reactor [J]. Nuclear Instruments and Methods in Physics Research Section A, 2016, 810: 63–67. doi: 10.1016/j.nima.2015.11.141 [11] LI J, WANG H, SUN G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 783: 76–79. doi: 10.1016/j.nima.2015.02.026 [12] XIE L, CHEN X P, FANG L M, et al. Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A, 2019, 915: 31–35. doi: 10.1016/j.nima.2018.10.002 [13] SHULL C G, STRAUSER W A, WOLLAN E O. Neutron diffraction by paramagnetic and antiferromagnetic substances [J]. Physical Review, 1951, 83(2): 333–345. doi: 10.1103/PhysRev.83.333 [14] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160 [15] KHVOSTANTSEV L G, SLESAREV V N, BRAZHKIN V V. Toroid type high-pressure device: history and prospects [J]. High Pressure Research, 2004, 24(3): 371–383. doi: 10.1080/08957950412331298761 [16] BESSON J M, NELMES R J, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180/181: 907–910. doi: 10.1016/0921-4526(92)90505-M [17] BESSON J M, WEILL G, HAMEL G, et al. Equation of state of lithium deuteride from neutron diffraction under high pressure [J]. Physical Review B, 1992, 45(6): 2613–2619. doi: 10.1103/PhysRevB.45.2613 [18] KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350 [19] ZHAO Y S, VON DREELE R B, MORGAN J G. A high P-T cell assembly for neutron diffraction up to 10 GPa and 1500 K [J]. High Pressure Research, 1999, 16(3): 161–177. doi: 10.1080/08957959908200289 [20] BULL C L, FUNNELL N P, TUCKER M G, et al. PEARL: the high pressure neutron powder diffractometer at ISIS [J]. High Pressure Research, 2016, 36(4): 493–511. doi: 10.1080/08957959.2016.1214730 [21] ZHAO Y S, ZHANG J Z, XU H W, et al. High-pressure neutron diffraction studies at LANSCE [J]. Applied Physics A, 2010, 99(3): 585–599. doi: 10.1007/s00339-010-5640-1 [22] HATTORI T, SANO-FURUKAWA A, ARIMA H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC [J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 780: 55–67. doi: 10.1016/j.nima.2015.01.059 [23] SANO-FURUKAWA A, HATTORI T, ARIMA H, et al. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments [J]. Review of Scientific Instruments, 2014, 85(11): 113905. doi: 10.1063/1.4901095 [24] GUTHRIE M, BOEHLER R, TULK C A, et al. Neutron diffraction observations of interstitial protons in dense ice [J]. Proceedings of the National Academy of Sciences of the United States of American, 2013, 110(26): 10552–10556. doi: 10.1073/pnas.1309277110 [25] BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197 [26] ANDERSEN K H, ARGYRIOU D N, JACKSON A J, et al. The instrument suite of the European Spallation Source [J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 957: 163402. doi: 10.1016/j.nima.2020.163402 [27] GUTHRIE M. Experimental methods in the physical sciences [J]. Experimental Methods in the Physical Sciences, 2017, 49: 637–681. doi: 10.1016/B978-0-12-805324-9.00011-X [28] GONCHARENKO I N, MIREBEAU I, OCHIAI A. Magnetic neutron diffraction under pressures up to 43 GPa: study of the EuX and GdX compounds [J]. Hyperfine Interactions, 2000, 128(1/2/3): 225–244. doi: 10.1023/A:1012639817199 [29] 惠博, 贺端威, 陆裕平, 等. 用于原位中子散射的液压对顶砧系统 [J]. 高压物理学报, 2013, 27(4): 517–522. doi: 10.11858/gywlxb.2013.04.008HUI B, HE D W, LU Y P, et al. A hydraulic opposite anvil system for high-pressure in-situ neutron diffraction [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 517–522. doi: 10.11858/gywlxb.2013.04.008 [30] 史钰, 陈喜平, 谢雷, 等. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179SHI Y, CHEN X P, XIE L, et al. High-pressure neutron diffraction techniques based on Paris-Edingburgh press [J]. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179 [31] MAO H K, BASSETT W A, TAKAHASHI T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar [J]. Journal of Applied Physics, 1967, 38(1): 272–276. doi: 10.1063/1.1708965 [32] 房雷鸣, 陈喜平, 谢雷, 等. 吉帕压力下原位中子衍射技术及其在铁中的应用 [J]. 高压物理学报, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001FANG L M, CHEN X P, XIE L, et al. High pressure in-situ neutron diffraction under gigapascal of iron [J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001 [33] HU Q W, FANG L M, LI Q, et al. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in-situ neutron diffraction [J]. High Pressure Research, 2019, 39(4): 655–665. doi: 10.1080/08957959.2019.1666841 [34] DEWAELE A, TORRENT M, LOUBEYRE P, et al. Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations [J]. Physical Review B, 2008, 78(10): 104102. doi: 10.1103/PhysRevB.78.104102 [35] TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research, 2009, 114(B3): B03208. doi: 10.1029/2008JB005813 [36] MARTÍINEZ-GARCÍA D, LE GODEC Y, MÉZOUAR M, et al. Equations of state of MgO at high pressure and temperature [J]. High Pressure Research, 2000, 18(1/2/3/4/5/6): 339–344. doi: 10.1080/08957950008200989 [37] 江明全, 李欣, 房雷鸣, 等. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证 [J]. 物理学报, 2020, 69(22).JIANG M Q, LI X, FANG L M, et al. Optimal design and experimental verification of high temperature and high pressure assembly of neutron diffraction based on PE type press [J]. Acta Physica Sinica, 2020, 69(22). [38] LUDL A A, BOVE L E, SAITTA A M, et al. Structural characterization of eutectic aqueous NaCl solutions under variable temperature and pressure conditions [J]. Physical Chemistry Chemical Physics, 2015, 17(21): 14054–14063. doi: 10.1039/C5CP00224A [39] GIBSON R E. The calculation of the solubility of certain salts in water at high pressures from data obtained at low pressures [J]. Journal of the American Chemical Society, 1934, 56(4): 865–870. doi: 10.1021/ja01319a030 [40] TROPPER P, MANNING C E. The solubility of fluorite in H2O and H2O-NaCl at high pressure and temperature [J]. Chemical Geology, 2007, 242(3/4): 299–306. doi: 10.1016/j.chemgeo.2007.03.017 [41] SUZUKI Y, SAWADA T, MIYASHITA S, et al. In situ measurements of the solubility of crystals under high pressure by an interferometric method [J]. Review of Scientific Instruments, 1998, 69(7): 2720–2724. doi: 10.1063/1.1149005 [42] CHEN J, HU Q W, FANG L M, et al. In situ high-pressure measurement of crystal solubility by using neutron diffraction [J]. Review of Scientific Instruments, 2018, 89(5): 053906. doi: 10.1063/1.5021317 [43] PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society A, 1993, 440(1909): 399–419. doi: 10.1098/rspa.1993.0023 [44] PALMER S J P, FIELD J E. The deformation and fracture of $ \;\beta$ -HMX [J]. Proceedings of the Royal Society A, 1982, 383(1785): 399–407. doi: 10.1098/rspa.1982.0137[45] GALLAGHER H G, MILLER J C, SHEEN D B, et al. Mechanical properties of $ \;\beta$ -HMX [J]. Chemistry Central Journal, 2015, 9: 22. doi: 10.1186/s13065-015-0091-6[46] LI H, LI Y, BAI L F, et al. Acceleration of $ \delta$ - to$\;\beta$ -HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002[47] FITZGIBBONS T C, GUTHRIE M, XU E, et al. Benzene-derived carbon nanothreads [J]. Nature Materials, 2015, 14(1): 43–47. doi: 10.1038/nmat4088 [48] LI X, WANG T, DUAN P, et al. Carbon nitride nanothread crystals derived from pyridine [J]. Journal of the American Chemical Society, 2018, 140(15): 4969–4972. doi: 10.1021/jacs.7b13247 [49] WILLIAMS J H, COCKCROFT J K, FITCH A N. Structure of the lowest temperature phase of the solid benzene-hexafluorobenzene adduct [J]. Angewandte Chemie International Edition, 1992, 31(12): 1655–1657. doi: 10.1002/anie.199216551 [50] WANG Y J, DONG X, TANG X Y, et al. Pressure-induced Diels-Alder reactions in C6H6-C6F6 cocrystal towards graphane structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468–1473. doi: 10.1002/anie.201813120