CMRR中子科学平台的高压中子衍射技术及应用

房雷鸣 陈喜平 谢雷 贺端威 胡启威 李欣 江明全 孙光爱 陈波 彭述明 李昊 韩铁鑫

房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫. CMRR中子科学平台的高压中子衍射技术及应用[J]. 高压物理学报, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
引用本文: 房雷鸣, 陈喜平, 谢雷, 贺端威, 胡启威, 李欣, 江明全, 孙光爱, 陈波, 彭述明, 李昊, 韩铁鑫. CMRR中子科学平台的高压中子衍射技术及应用[J]. 高压物理学报, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
FANG Leiming, CHEN Xiping, XIE Lei, HE Duanwei, HU Qiwei, LI Xin, JIANG Mingquan, SUN Guang’ai, CHEN Bo, PENG Shuming, LI Hao, HAN Tiexin. High Pressure Neutron Diffraction Technology and Applications at CMRR[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588
Citation: FANG Leiming, CHEN Xiping, XIE Lei, HE Duanwei, HU Qiwei, LI Xin, JIANG Mingquan, SUN Guang’ai, CHEN Bo, PENG Shuming, LI Hao, HAN Tiexin. High Pressure Neutron Diffraction Technology and Applications at CMRR[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050104. doi: 10.11858/gywlxb.20200588

CMRR中子科学平台的高压中子衍射技术及应用

doi: 10.11858/gywlxb.20200588
基金项目: 国家自然科学基金(11427810);国家重点研发计划(2016YFA0401503);科学挑战专题(TZ2016001)
详细信息
    作者简介:

    房雷鸣(1980-),男,博士,副研究员,主要从事高压原位中子衍射研究. E-mail: flmyaya2008@163.com

  • 中图分类号: O521.3; O521.2; O571.56

High Pressure Neutron Diffraction Technology and Applications at CMRR

  • 摘要: 中国绵阳研究堆(CMRR)建有一台专门的高压中子衍射谱仪(凤凰),用于高压科学研究。对聚焦单色器和导管升级后,凤凰谱仪的束流通量大幅度提高。基于凤凰谱仪,建立并发展了一系列高压中子技术,包括:气体压腔、活塞圆筒型压腔、紧固型压腔、标准巴黎-爱丁堡压机(VX4型)、带加热和水冷系统的两面顶压机(HP3-1500)、及压机的调节与定位系统。通过对高温高压样品腔体组装的优化设计,原位中子衍射的温度和压力最高达到34 GPa和1500 ℃。建立的高压中子衍射技术已成功应用于高压溶解度测量、含能材料结构表征、高压聚合反应等方面的研究。

     

  • 图  凤凰谱仪结构顶视图

    Figure  1.  Top view of FENGHUANG diffractometer

    图  凤凰谱仪上配备的HP3-1500两面顶压机

    Figure  2.  HP3-1500 high pressure device for FENGHUANG diffractometer

    图  不同加载力下NaCl的中子衍射谱

    Figure  3.  Neutron diffraction patterns of NaCl at different loading forces

    图  实验与计算的活塞圆筒压腔压力对比

    Figure  4.  Pressures of piston cylinders cell in the experiment and calculation

    图  (a)WC单凹曲面压砧及TiZr封垫,(b)WC双凹曲面压砧及TiZr封垫,(c)单凹曲面和双凹曲面压砧在不同压力下获得的铁的中子衍射谱(修改于文献[30])

    Figure  5.  (a) ST WC anvil and gasket, (b) DT WC anvil and gasket, and (c) neutron diffraction patterns of Fe with ST and DT anvils at different loading forces (Modified for Ref. [30])

    图  优化的金刚石双凹曲面组装实物图及示意图

    Figure  6.  Modified DT assembly for the neutron diffraction experiments

    图  不同压力下Ni的高压中子衍射谱(MgO和金刚石衍射峰分别来自传压介质和压砧)

    Figure  7.  High pressure neutron diffraction patterns of pure metal Ni at different pressure (Peaks of MgO and diamond come from pressure transmitting medium and anvil, respectively.)

    图  高温高压中子衍射实验组装

    Figure  8.  Schematic of high pressure-high temperature assembly for neutron diffraction experiments

    图  不同温度和压力下MgO的高温高压中子衍射谱(ZrO2和WC衍射峰分别来自传压介质和压砧)

    Figure  9.  Neutron diffraction patterns of MgO at different pressure and temperature (Peaks of ZrO2 and WC come from pressure transmitting medium and anvil, respectively)

    图  10  不同压力下NaCl的中子衍射谱(插图为高压下溶解度测量装置)[42]

    Figure  10.  Neutron diffraction patterns of NaCl at different loading forces (Inset is the piston-cylinder cell)[42]

    图  11  NaCl的溶解度随压力的变化曲线[42]

    Figure  11.  Solubility of NaCl at different pressures[42]

    图  12  不同压力下HMX的中子衍射谱(修改于文献[46])

    Figure  12.  Neutron diffraction patterns of HMX at different pressures (Modified for Ref.[46])

    图  13  Ⅵ相C6H6-C6F6共晶的高压中子衍射谱(修改于文献[50])

    Figure  13.  High pressure neutron diffraction patterns of C6H6-C6F6 cocrystal (Modified for Ref.[50])

    表  1  凤凰谱仪主要的仪器参数

    Table  1.   Instrumental parameters of FENGHUANG diffractometer

    Take-off-angle/(°)Wavelength/ÅScan angle range/(°)
    93.81.5900−1.5925−4−153
    Maximum beam size/(mm × mm)Flux at sample position/(106 ns−1·cm−2)Minimum resolution/%
    30 × 400.34−2.840.356−0.661
    下载: 导出CSV
  • [1] KISI E H, HOWARD C J. Applications of neutron powder diffraction [M]. Oxford: Oxford University Press, 2008.
    [2] LIEBERMANN R C. Multi-anvil, high pressure apparatus: a half-century of development and progress [J]. High Pressure Research, 2011, 31(4): 493–532. doi: 10.1080/08957959.2011.618698
    [3] GUTHRIE M. Future directions in high-pressure neutron diffraction [J]. Journal of Physics: Condensed Matter, 2015, 27(15): 153201. doi: 10.1088/0953-8984/27/15/153201
    [4] KLOTZ S, BESSON J M, HAMEL G, et al. High pressure neutron diffraction using the Paris-Edinburgh cell: experimental possibilities and future prospects [J]. High Pressure Research, 1996, 14(4/5/6): 249–255. doi: 10.1080/08957959608201409
    [5] LE GODEC Y, DOVE M T, REDFERN S A T, et al. Recent developments using the Paris-Edinburgh cell for neutron diffraction at high pressure and high temperature and some applications [J]. High Pressure Research, 2003, 23(3): 281–287. doi: 10.1080/0895795032000102496
    [6] KLOTZ S. Techniques in high pressure neutron scattering [M]. Boca Raton, FL: CRC Press, Taylor and Francis, 2013.
    [7] MCWHAN D B, BLOCH D, PARISOT G. Apparatus for neutron diffraction at high pressure [J]. Review of Scientific Instruments, 1974, 45(5): 643–646. doi: 10.1063/1.1686704
    [8] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600

    PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
    [9] SUN G G, ZHANG C S, CHEN B, et al. A new operating neutron scattering facility CMRR in China [J]. Neutron News, 2016, 27(4): 21–26. doi: 10.1080/10448632.2016.1233018
    [10] PENG M, SUN L W, CHEN L, et al. A new small-angle neutron scattering spectrometer at China Mianyang research reactor [J]. Nuclear Instruments and Methods in Physics Research Section A, 2016, 810: 63–67. doi: 10.1016/j.nima.2015.11.141
    [11] LI J, WANG H, SUN G G, et al. Neutron diffractometer RSND for residual stress analysis at CAEP [J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 783: 76–79. doi: 10.1016/j.nima.2015.02.026
    [12] XIE L, CHEN X P, FANG L M, et al. Fenghuang: high-intensity multi-section neutron powder diffractometer at CMRR [J]. Nuclear Instruments and Methods in Physics Research Section A, 2019, 915: 31–35. doi: 10.1016/j.nima.2018.10.002
    [13] SHULL C G, STRAUSER W A, WOLLAN E O. Neutron diffraction by paramagnetic and antiferromagnetic substances [J]. Physical Review, 1951, 83(2): 333–345. doi: 10.1103/PhysRev.83.333
    [14] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [15] KHVOSTANTSEV L G, SLESAREV V N, BRAZHKIN V V. Toroid type high-pressure device: history and prospects [J]. High Pressure Research, 2004, 24(3): 371–383. doi: 10.1080/08957950412331298761
    [16] BESSON J M, NELMES R J, HAMEL G, et al. Neutron powder diffraction above 10 GPa [J]. Physica B: Condensed Matter, 1992, 180/181: 907–910. doi: 10.1016/0921-4526(92)90505-M
    [17] BESSON J M, WEILL G, HAMEL G, et al. Equation of state of lithium deuteride from neutron diffraction under high pressure [J]. Physical Review B, 1992, 45(6): 2613–2619. doi: 10.1103/PhysRevB.45.2613
    [18] KLOTZ S, BESSON J M, HAMEL G, et al. Neutron powder diffraction at pressures beyond 25 GPa [J]. Applied Physics Letters, 1995, 66(14): 1735–1737. doi: 10.1063/1.113350
    [19] ZHAO Y S, VON DREELE R B, MORGAN J G. A high P-T cell assembly for neutron diffraction up to 10 GPa and 1500 K [J]. High Pressure Research, 1999, 16(3): 161–177. doi: 10.1080/08957959908200289
    [20] BULL C L, FUNNELL N P, TUCKER M G, et al. PEARL: the high pressure neutron powder diffractometer at ISIS [J]. High Pressure Research, 2016, 36(4): 493–511. doi: 10.1080/08957959.2016.1214730
    [21] ZHAO Y S, ZHANG J Z, XU H W, et al. High-pressure neutron diffraction studies at LANSCE [J]. Applied Physics A, 2010, 99(3): 585–599. doi: 10.1007/s00339-010-5640-1
    [22] HATTORI T, SANO-FURUKAWA A, ARIMA H, et al. Design and performance of high-pressure PLANET beamline at pulsed neutron source at J-PARC [J]. Nuclear Instruments and Methods in Physics Research Section A, 2015, 780: 55–67. doi: 10.1016/j.nima.2015.01.059
    [23] SANO-FURUKAWA A, HATTORI T, ARIMA H, et al. Six-axis multi-anvil press for high-pressure, high-temperature neutron diffraction experiments [J]. Review of Scientific Instruments, 2014, 85(11): 113905. doi: 10.1063/1.4901095
    [24] GUTHRIE M, BOEHLER R, TULK C A, et al. Neutron diffraction observations of interstitial protons in dense ice [J]. Proceedings of the National Academy of Sciences of the United States of American, 2013, 110(26): 10552–10556. doi: 10.1073/pnas.1309277110
    [25] BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197
    [26] ANDERSEN K H, ARGYRIOU D N, JACKSON A J, et al. The instrument suite of the European Spallation Source [J]. Nuclear Instruments and Methods in Physics Research Section A, 2020, 957: 163402. doi: 10.1016/j.nima.2020.163402
    [27] GUTHRIE M. Experimental methods in the physical sciences [J]. Experimental Methods in the Physical Sciences, 2017, 49: 637–681. doi: 10.1016/B978-0-12-805324-9.00011-X
    [28] GONCHARENKO I N, MIREBEAU I, OCHIAI A. Magnetic neutron diffraction under pressures up to 43 GPa: study of the EuX and GdX compounds [J]. Hyperfine Interactions, 2000, 128(1/2/3): 225–244. doi: 10.1023/A:1012639817199
    [29] 惠博, 贺端威, 陆裕平, 等. 用于原位中子散射的液压对顶砧系统 [J]. 高压物理学报, 2013, 27(4): 517–522. doi: 10.11858/gywlxb.2013.04.008

    HUI B, HE D W, LU Y P, et al. A hydraulic opposite anvil system for high-pressure in-situ neutron diffraction [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 517–522. doi: 10.11858/gywlxb.2013.04.008
    [30] 史钰, 陈喜平, 谢雷, 等. 基于巴黎-爱丁堡压机的高压中子衍射技术 [J]. 物理学报, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179

    SHI Y, CHEN X P, XIE L, et al. High-pressure neutron diffraction techniques based on Paris-Edingburgh press [J]. Acta Physica Sinica, 2019, 68(11): 116101. doi: 10.7498/aps.68.20190179
    [31] MAO H K, BASSETT W A, TAKAHASHI T. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar [J]. Journal of Applied Physics, 1967, 38(1): 272–276. doi: 10.1063/1.1708965
    [32] 房雷鸣, 陈喜平, 谢雷, 等. 吉帕压力下原位中子衍射技术及其在铁中的应用 [J]. 高压物理学报, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001

    FANG L M, CHEN X P, XIE L, et al. High pressure in-situ neutron diffraction under gigapascal of iron [J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 1–6. doi: 10.11858/gywlxb.2016.01.001
    [33] HU Q W, FANG L M, LI Q, et al. Enhancing the pressure limitation in large-volume Bridgman-anvil cell used for in-situ neutron diffraction [J]. High Pressure Research, 2019, 39(4): 655–665. doi: 10.1080/08957959.2019.1666841
    [34] DEWAELE A, TORRENT M, LOUBEYRE P, et al. Compression curves of transition metals in the Mbar range: experiments and projector augmented-wave calculations [J]. Physical Review B, 2008, 78(10): 104102. doi: 10.1103/PhysRevB.78.104102
    [35] TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research, 2009, 114(B3): B03208. doi: 10.1029/2008JB005813
    [36] MARTÍINEZ-GARCÍA D, LE GODEC Y, MÉZOUAR M, et al. Equations of state of MgO at high pressure and temperature [J]. High Pressure Research, 2000, 18(1/2/3/4/5/6): 339–344. doi: 10.1080/08957950008200989
    [37] 江明全, 李欣, 房雷鸣, 等. 基于PE型压机中子衍射高温高压组装的优化设计与实验验证 [J]. 物理学报, 2020, 69(22).

    JIANG M Q, LI X, FANG L M, et al. Optimal design and experimental verification of high temperature and high pressure assembly of neutron diffraction based on PE type press [J]. Acta Physica Sinica, 2020, 69(22).
    [38] LUDL A A, BOVE L E, SAITTA A M, et al. Structural characterization of eutectic aqueous NaCl solutions under variable temperature and pressure conditions [J]. Physical Chemistry Chemical Physics, 2015, 17(21): 14054–14063. doi: 10.1039/C5CP00224A
    [39] GIBSON R E. The calculation of the solubility of certain salts in water at high pressures from data obtained at low pressures [J]. Journal of the American Chemical Society, 1934, 56(4): 865–870. doi: 10.1021/ja01319a030
    [40] TROPPER P, MANNING C E. The solubility of fluorite in H2O and H2O-NaCl at high pressure and temperature [J]. Chemical Geology, 2007, 242(3/4): 299–306. doi: 10.1016/j.chemgeo.2007.03.017
    [41] SUZUKI Y, SAWADA T, MIYASHITA S, et al. In situ measurements of the solubility of crystals under high pressure by an interferometric method [J]. Review of Scientific Instruments, 1998, 69(7): 2720–2724. doi: 10.1063/1.1149005
    [42] CHEN J, HU Q W, FANG L M, et al. In situ high-pressure measurement of crystal solubility by using neutron diffraction [J]. Review of Scientific Instruments, 2018, 89(5): 053906. doi: 10.1063/1.5021317
    [43] PALMER S J P, FIELD J E, HUNTLEY J M. Deformation, strengths and strains to failure of polymer bonded explosives [J]. Proceedings of the Royal Society A, 1993, 440(1909): 399–419. doi: 10.1098/rspa.1993.0023
    [44] PALMER S J P, FIELD J E. The deformation and fracture of $ \;\beta$ -HMX [J]. Proceedings of the Royal Society A, 1982, 383(1785): 399–407. doi: 10.1098/rspa.1982.0137
    [45] GALLAGHER H G, MILLER J C, SHEEN D B, et al. Mechanical properties of $ \;\beta$ -HMX [J]. Chemistry Central Journal, 2015, 9: 22. doi: 10.1186/s13065-015-0091-6
    [46] LI H, LI Y, BAI L F, et al. Acceleration of $ \delta$ - to $\;\beta$ -HMX-D8 phase retransformation with D2O and intergranular strain evolution in a HMX-based polymer-bonded explosive [J]. The Journal of Physical Chemistry C, 2019, 123(12): 6958–6964. doi: 10.1021/acs.jpcc.8b10002
    [47] FITZGIBBONS T C, GUTHRIE M, XU E, et al. Benzene-derived carbon nanothreads [J]. Nature Materials, 2015, 14(1): 43–47. doi: 10.1038/nmat4088
    [48] LI X, WANG T, DUAN P, et al. Carbon nitride nanothread crystals derived from pyridine [J]. Journal of the American Chemical Society, 2018, 140(15): 4969–4972. doi: 10.1021/jacs.7b13247
    [49] WILLIAMS J H, COCKCROFT J K, FITCH A N. Structure of the lowest temperature phase of the solid benzene-hexafluorobenzene adduct [J]. Angewandte Chemie International Edition, 1992, 31(12): 1655–1657. doi: 10.1002/anie.199216551
    [50] WANG Y J, DONG X, TANG X Y, et al. Pressure-induced Diels-Alder reactions in C6H6-C6F6 cocrystal towards graphane structure [J]. Angewandte Chemie International Edition, 2019, 58(5): 1468–1473. doi: 10.1002/anie.201813120
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  9336
  • HTML全文浏览量:  3202
  • PDF下载量:  106
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-07-21
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回