Phase Transitions of α-Quartz and Coesite at High Pressures
-
摘要: 利用金刚石压腔和同步辐射X射线衍射技术,对α-石英和柯石英在常温高压下的相变行为进行了研究。实验结果表明:α-石英在约23 GPa开始发生结构相变,在约44 GPa相变完成,直至59 GPa仍能观察到结晶态;柯石英在约22 GPa转变为柯石英-Ⅱ相,高于36 GPa时,继续发生结构转变,直至59 GPa仍有结晶态;氖气和氩气所提供的不同静水压条件对α-石英和柯石英的高压相变行为影响不大。实验结果为进一步厘清二氧化硅物相的压致相变行为和相变机制提供了实验支撑。Abstract: Phase behaviors of α-quartz and coesite at high pressures and room temperature have been investigated by using diamond anvil cells combined with synchrotron X-ray diffraction. α-quartz undergoes a phase transition to a new phase at about 23 GPa, and the phase transition gets finished at about 44 GPa. The high-pressure phase of α-quartz can be observed up to 59 GPa. Coesite transforms to coesite-II at about 22 GPa, and coesite-II undergoes phase transitions above about 36 GPa. Crystalline phase can be observed up to 59 GPa in coesite. Different hydrostatic conditions provided by neon and argon have no crucial effect on high-pressure phase behaviors of α-quartz and coesite. These results not only clarify pressure-induced phase transition pathway of α-quartz and coesite, but also shed light on the transition mechanism of silica under high pressure.
-
Key words:
- α-quartz /
- coesite /
- diamond anvil cell /
- phase transition
-
图 2 α-石英在不同压强下的代表性XRD谱(第1组实验。(e)为(a)中橘色方框区域放大图。黑色方框为α-石英的衍射斑点,对应的数字为其晶面指数(hkl);橘色箭头所指为XRD谱中新出现的衍射峰;绿色所示衍射斑点代表金刚石;蓝色所示衍射环代表氖气。)
Figure 2. Representative XRD patterns of α-quartz at different pressures (Run 1. (e) zoomed-in pictures corresponding to the orange box in (a). Black boxes with Miller indices (hkl) stand for diffraction peaks of α-quartz; orange arrows point out diffraction peaks from high pressure phase of α-quartz; green and blue arrows represent diffraction peaks of diamond and neon, respectively.)
图 3 α-石英在不同压强下的代表性XRD谱(第2组实验。图中黑色方框为α-石英的衍射斑点,对应的数字为其晶面指数(hkl);橘色箭头所指为衍射图谱中新出现的衍射峰;绿色所示衍射斑点代表金刚石;蓝色所示衍射环代表氩气。)
Figure 3. Representative XRD patterns of α-quartz at different pressures (Run 2. Black boxes with Miller indices (hkl) stand for diffraction peaks of α-quartz; orange arrows point out diffraction peaks from high pressure phase of α-quartz; green and blue arrows represent diffraction peaks of diamond and argon, respectively.)
图 4 柯石英在不同压强下的代表性XRD谱(第1组实验。橘色方框所示为22.4 GPa下柯石英(040)晶面和26.6 GPa下柯石英-Ⅱ相(080)晶面的衍射峰,绿色所示衍射斑点代表金刚石,蓝色所示衍射环代表氖气。)
Figure 4. Representative XRD patterns of coesiteat at different pressures (Run 1. The diffraction peak marked in the orange box starts from (040) of coesite and then (080) of coesite-Ⅱ; green and blue arrows represent diffraction peaks of diamond and neon, respectively.)
表 1 两组高压原位实验条件
Table 1. Experimental conditions of two runs of experiments
Run No. Pressure medium Pressure calibrant Maximum pressure/GPa Temperature/K 1 Neon Au 58.5 300 2 Argon Au 54.0 300 -
[1] HEANEY P J, PREWITT C T, GIBBS G V. Silica: physical behavior, geochemistry and materials applications [M]. Washington D.C.: Mineralogical Society of America, 1994. [2] HEMLEY R J, PREWITT C T, KINGMA K J. High-pressure behavior of silica [J]. Reviews in Mineralogy and Geochemistry, 1994, 29(1): 41–81. [3] TSUCHIDA Y, YAGI T. New pressure-induced transformations of silica at room temperature [J]. Nature, 1990, 347(6290): 267–269. doi: 10.1038/347267a0 [4] HAINES J, LÉGER J M, GORELLI F, et al. Crystalline post-quartz phase in silica at high pressure [J]. Physical Review Letters, 2001, 87(15): 155503. doi: 10.1103/PhysRevLett.87.155503 [5] HU Q Y, SHU J F, YANG W G, et al. Stability limits and transformation pathways of α-quartz under high pressure [J]. Physical Review B, 2017, 95(10): 104112. doi: 10.1103/PhysRevB.95.104112 [6] BYKOVA E, BYKOV M, ČERNOK A, et al. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts [J]. Nature Communications, 2018, 9(1): 4789. doi: 10.1038/s41467-018-07265-z [7] HU Q Y, SHU J F, CADIEN A, et al. Polymorphic phase transition mechanism of compressed coesite [J]. Nature Communications, 2015, 6: 6630. doi: 10.1038/ncomms7630 [8] ONO S, KIKEGAWA T, HIGO Y, et al. Precise determination of the phase boundary between coesite and stishovite in SiO2 [J]. Physics of the Earth and Planetary Interiors, 2017, 264: 1–6. doi: 10.1016/j.pepi.2017.01.003 [9] ČERNOK A, MARQUARDT K, CARACAS R, et al. Compressional pathways of α-cristobalite, structure of cristobalite X-I, and towards the understanding of seifertite formation [J]. Nature Communications, 2017, 8: 15647. doi: 10.1038/ncomms15647 [10] KINGMA K J, MEADE C, HEMLEY R J, et al. Microstructural observations of α-quartz amorphization [J]. Science, 1993, 259(5095): 666–669. doi: 10.1126/science.259.5095.666 [11] HEMLEY R J, JEPHCOAT A P, MAO H K, et al. Pressure-induced amorphization of crystalline silica [J]. Nature, 1988, 334(6177): 52–54. doi: 10.1038/334052a0 [12] KINGMA K J, HEMLEY R J, MAO H K, et al. New high-pressure transformation in α-quartz [J]. Physical Review Letters, 1993, 70(25): 3927–3930. doi: 10.1103/PhysRevLett.70.3927 [13] KINGMA K J, MAO H K, HEMLEY R J. Synchrotron X-ray diffraction of SiO2 to multimegabar pressures [J]. High Pressure Research, 1996, 14(4/5/6): 363–374. doi: 10.1080/08957959608201422 [14] BINGGELI N, CHELIKOWSKY J R. Elastic instability in α-quartz under pressure [J]. Physical Review Letters, 1992, 69(15): 2220–2223. doi: 10.1103/PhysRevLett.69.2220 [15] CHOUDHURY N, CHAPLOT S L. Ab initio studies of phonon softening and high-pressure phase transitions of α-quartz SiO2 [J]. Physical Review B, 2006, 73(9): 094304. doi: 10.1103/PhysRevB.73.094304 [16] WILLIAMS Q, HEMLEY R J, KRUGER M B, et al. High-pressure infrared sepctra of α-quartz, coesite, stishovite and silica glass [J]. Journal of Geophysical Research: Solid Earth, 1993, 98(B12): 22157–22170. doi: 10.1029/93JB02171 [17] ČERNOK A, BYKOVA E, BALLARAN T B, et al. High-pressure crystal chemistry of coesite-I and its transition to coesite-II [J]. Zeitschrift für Kristallographie-Crystalline Materials, 2014, 229(11): 761–773. doi: 10.1515/zkri-2014-1763 [18] ČERNOK A, BALLARAN T B, CARACAS R, et al. Pressure-induced phase transitions in coesite [J]. American Mineralogist, 2014, 99(4): 755–763. doi: 10.2138/am.2014.4585 [19] CHEN T, WANG X B, QI X T, et al. Elasticity and phase transformation at high pressure in coesite from experiments and first-principles calculations [J]. American Mineralogist, 2016, 101(5): 1190–1196. doi: 10.2138/am-2016-5533 [20] WU Y, LIU H Y, HUANG H J, et al. Pressure-induced structural modulations in coesite [J]. Physical Review B, 2018, 98(10): 104106. doi: 10.1103/PhysRevB.98.104106 [21] LIU W, WU X B, LIANG Y F, et al. Multiple pathways in pressure-induced phase transition of coesite [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(49): 12894–12899. doi: 10.1073/pnas.1710651114 [22] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673 [23] FEI Y W, RICOLLEAU A, FRANK M, et al. Toward an internally consistent pressure scale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9182–9186. doi: 10.1073/pnas.0609013104 [24] DERA P, ZHURAVLEV K, PRAKAPENKA V, et al. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software [J]. High Pressure Research, 2013, 33(3): 466–484. doi: 10.1080/08957959.2013.806504 [25] ZHA C S, BOEHLER R, YOUNG D A, et al. The argon melting curve to very high pressures [J]. The Journal of Chemical Physics, 1986, 85(2): 1034–1036. doi: 10.1063/1.451295 [26] VOS W L, SCHOUTEN J A, YOUNG D A, et al. The melting curve of neon at high pressure [J]. The Journal of Chemical Physics, 1991, 94(5): 3835–3838. doi: 10.1063/1.460683 [27] KLOTZ S, CHERVIN J C, MUNSCH P, et al. Hydrostatic limits of 11 pressure transmitting media [J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075413. doi: 10.1088/0022-3727/42/7/075413