Dynamic Response Process of PC Box-Girder Bridge under Implosion Load
-
摘要: 采用三阶段连续耦合有限元方法,对预应力钢筋砼(Prestressed reinforced concrete,PC)箱梁桥在内爆荷载作用下的动态响应过程进行了数值模拟,综合考虑了结构自重和预应力的影响,得到了PC箱梁桥局部和整体的破坏模式,并分析了破坏机理。结果表明:三阶段连续耦合有限元方法再现了PC箱梁桥局部破坏导致整体垮塌的物理过程;初始应力阶段,PC箱梁桥应力施加符合工程实际;局部响应阶段,腹板与顶板连接部位产生裂缝,顶板与底板在中央位置形成破口;整体响应阶段,在重力和预应力的作用下,箱梁桥先向上起拱,后向下垮塌,最终发生弯曲破坏。Abstract: In this work, a numerical simulation was performed on the dynamic response process of the prestressed reinforced concrete (PC) box-girder bridge under implosion load via three-stage continuous coupling finite element method. Taking gravity and prestress into account, the damage mode of PC box-girder bridge was obtained. Besides, the failure mechanism was analyzed. It is shown that the PC box-girder bridge’s physical process from partial destruction to overall collapse can be theoretically reproduced by the three-stage continuous coupled finite element method. At initial stress stage, the stress of the PC box-girder bridge meets the requirement of the actual project. At local response stage, cracks occur at the connection between the web and the roof, and a break around the top and bottom flanges comes into being in the center. At overall response stage, influenced by the gravity and prestress, the box-girder bridge first arches up, then collapses and finally makes a bending failure.
-
Key words:
- three-stage continuous coupling /
- blasting /
- box-girder bridge /
- dynamic response
-
表 1 炸药的主要参数
Table 1. Main parameters of explosive
$\,\rho\rm{_e} $/(kg·m−3) D/(m·s−1) pC-J/GPa A/GPa B/GPa R1 R2 $\omega $ 1 630 6 930 21 371 353 4.15 0.95 0.3 表 2 空气的主要参数
Table 2. Main parameters of air
ρa/(kg·m−3) E0/(J·m−3) C0 C1 C2 C3 C4 C5 C6 1.293 2.5 × 105 0 0 0 0 0.4 0.4 0 表 3 混凝土和钢筋材料的基本参数
Table 3. Basic parameters of concrete and rebar
Material $\,\rho $/(kg·m−3) E/MPa $\,\nu$ σbc/MPa $\varepsilon $ σy/MPa $E_{\rm{t} }$/GPa Concrete 2 650 28.3 0.2 34.4 0.01 Rebar 7 800 2.1 × 105 0.3 425 30 表 4 试验结果与数值模拟结果对比
Table 4. Comparison of experimental and numerical simulation results
r/cm lmax/cm d/cm $\delta $/% Exp. Sim. Exp. Sim. Exp. Sim. r lmax d 30.0 27.0 78.0 71.0 13.6 12.0 10.0 9.0 11.8 -
[1] 孟祥瑞, 栗建桥, 宁建国, 等. 爆炸冲击波在仿桥梁结构内传播的数值模拟 [J]. 高压物理学报, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649MENG X R, LI J Q, NING J G, et al. Numerical simulation of explosive shock wave propagation in imitation bridge structure [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042301. doi: 10.11858/gywlxb.20180649 [2] YAN B, ZHOU Y H, LIU F, et al. Numerical study on damage mechanism of PRC T-beam under close-in blast loading [J]. Applied Mechanics and Materials, 2015, 730: 55–64. doi: 10.4028/www.scientific.net/AMM.730.55 [3] 方秦, 杨石刚, 陈力, 等. 天津港“8·12”特大火灾爆炸事故建筑物和人员损伤破坏情况及其爆炸威力分析 [J]. 土木工程学报, 2017(3): 12–18.FANG Q, YANG S G, CHEN L, et al. Analysis on the building damage, personnel casualties and blast energy of the “8·12” explosion in Tianjin port [J]. China Civil Engineering Journal, 2017(3): 12–18. [4] 梅迪, 李海超, 张艳萍, 等. 导弹对箱梁的毁伤效应分析 [J]. 军事交通学院学报, 2019, 21(4): 82–87.MEI D, LI H C, ZHANG Y P, et al. Analysis of damage effects of missile on box girder [J]. Journal of Military Transportation University, 2019, 21(4): 82–87. [5] 张勤彬, 程贵海, 徐中慧, 等. 贾木那大桥水压定向爆破及其数值模拟 [J]. 爆炸与冲击, 2019, 39(6): 065201. doi: 10.11883/bzycj-2018-0089ZHANG Q B, CHENG G H, XU Z H, et al. Directional water pressure blasting of Jamuna bridge and its numerical simulation [J]. Explosion and Shock Waves, 2019, 39(6): 065201. doi: 10.11883/bzycj-2018-0089 [6] 胡志坚, 张一峰, 俞文生, 等. 近场爆炸时预应力混凝土梁体抗爆分析 [J]. 中国公路学报, 2019, 32(3): 71–80.HU Z J, ZHANG Y F, YU W S, et al. Anti-blast resistance analysis of prestressed concrete bridges under close-by blast [J]. China Journal of Highway and Transport, 2019, 32(3): 71–80. [7] YAO S J, ZHAO N, JIANG Z G, et al. Dynamic response of steel box girder under internal blast loading [J]. Advances in Civil Engineering, 2018, 9676298: 1–12. [8] TANG E K C, HAO H. Numerical simulation of a cable-stayed bridge response to blast loads, Part I: model development and response calculations [J]. Engineering Structures, 2010, 32(10): 3180–3192. doi: 10.1016/j.engstruct.2010.06.007 [9] HAO H, TANG E K C. Numerical simulation of a cable-stayed bridge response to blast loads, Part Ⅱ: damage prediction and FRP strengthening [J]. Engineering Structures, 2010, 32(10): 3193–3205. doi: 10.1016/j.engstruct.2010.06.006 [10] MAHONEY E E. Analyzing the effects of blast loads on bridges using probability, structural analysis, and performance criteria [D]. College Park: University of Maryland, 2007. [11] SUTHAR K N. Effect of dead, live and blast loads on a suspension bridge [D]. College Park: University of Maryland, 2007. [12] PAN Y X, VENTURA C E, CHEUNG M M S. Performance of highway bridges subjected to blast loads [J]. Engineering Structures, 2017, 151: 788–801. doi: 10.1016/j.engstruct.2017.08.028 [13] 王向阳, 冯英骥. 爆炸冲击作用下连续梁桥动力响应和影响因素研究 [J]. 爆破, 2017, 34(3): 104–113. doi: 10.3963/j.issn.1001-487X.2017.03.019WANG X Y, FENG Y J. Study of dynamic response and influence factors of continuous girder bridge under blast loading [J]. Blasting, 2017, 34(3): 104–113. doi: 10.3963/j.issn.1001-487X.2017.03.019 [14] SHIRAVAND M R, PARVANEHRO P. Numerical study on damage mechanism of post-tensioned concrete box bridges under close-in deck explosion [J]. Engineering Failure Analysis, 2017, 81: 103–116. doi: 10.1016/j.engfailanal.2017.07.033 [15] IBRAHIM A, SALIM H. Finite-element analysis of reinforced-concrete box girder bridges under close-in detonations [J]. Journal of Performance of Constructed Facilities, 2013, 27(6): 774–784. doi: 10.1061/(ASCE)CF.1943-5509.0000360 [16] 汪维, 刘光昆, 汪琴, 等. 四边固支方形钢筋混凝土板抗爆试验研究 [J]. 兵工学报, 2018, 39(S1): 108–113.WANG W, LIU G K, WANG Q, et al. Experimental research on four-sides fixed square slabs under blast loading [J]. Acta Armamentarii, 2018, 39(S1): 108–113. [17] 戴志涵, 严波. 爆炸作用下斜拉桥A型钢筋砼桥塔动态响应过程模拟研究 [C]//第26届全国结构工程学术会议论文集(第Ⅲ册), 2017: 21–27.DAI Z H, YAN B. Study on dynamic response progress of reinforced concrete A-type cable-stayed bridge tower under blasting load [C]//Proceedings of the Twenty-Sixth National Conference on Structural Engineering (Ⅲ), 2017: 21–27. [18] MALVAR L J, CRAWFORD J E, WESEVICH J W, et al. A plasticity concrete material model for DYNA3D [J]. International Journal of Impact Engineering, 1997, 19(9/10): 847–873. [19] CHEN G, HAO Y F, HAO H. 3D meso-scale modelling of concrete material in spall tests [J]. Materials and Structures, 2015, 48(6): 1887–1899. doi: 10.1617/s11527-014-0281-z [20] 张巍. 常规武器作用下斜拉桥结构的动力行为分析及损伤评估研究 [D]. 成都: 西南交通大学, 2007.ZHANG W. Research on dynamic behavior and damage assessment of cable-stayed bridges to conventional weapons effects [D]. Chengdu: Southwest Jiaotong University, 2007. [21] XU K, LU Y. Numerical simulation study of spallation in reinforced concrete plates subjected to blast loading [J]. Computers & Structures, 2006, 84(5/6): 431–438. [22] LI J, HAO H. Numerical study of concrete spall damage to blast loads [J]. International Journal of Impact Engineering, 2014, 68: 41–55. doi: 10.1016/j.ijimpeng.2014.02.001 [23] 杨喻淇, 曾祥国, 韩荣辉, 等. 爆炸荷载作用桥梁动力响应及损伤的数值模拟 [J]. 四川建筑科学研究, 2012, 38(5): 19–23. doi: 10.3969/j.issn.1008-1933.2012.05.006YANG Y Q, ZENG X G, HAN R H, et al. The numerical simulation of dynamic response and damage of bridge under blast loading [J]. Sichuan Building Science, 2012, 38(5): 19–23. doi: 10.3969/j.issn.1008-1933.2012.05.006 [24] ZHAO C F, CHEN J Y. Damage mechanism and mode of square reinforced concrete slab subjected to blast loading [J]. Theoretical and Applied Fracture Mechanics, 2013, 63/64: 54–62. doi: 10.1016/j.tafmec.2013.03.006 [25] LUCCIONI B M, AMBROSINI R D, DANESI R F. Analysis of building collapse under blast loads [J]. Engineering Structures, 2004, 26(1): 63–71. doi: 10.1016/j.engstruct.2003.08.011 [26] 庄茁. Abaqus/standard有限元软件入门指南 [M]. 北京: 清华大学出版社, 1998.ZHUANG Z. Abaqus/standard finite element software introduction guide [M]. Beijing: Tsinghua University Press, 1998. [27] 曹奇, 成艾国, 周泽, 等. 汽车座椅安全带固定点强度试验仿真模型改进 [J]. 中国机械工程, 2012, 23(14): 1707–1711. doi: 10.3969/j.issn.1004-132X.2012.14.018CAO Q, CHENG A G, ZHOU Z, et al. Simulation model improvement of vehicle seatbelt anchorage strength [J]. China Mechanical Engineering, 2012, 23(14): 1707–1711. doi: 10.3969/j.issn.1004-132X.2012.14.018 [28] 王立军, 王伟, 叶步永. 大开口船舶角隅强度有限元分析研究 [J]. 浙江海洋学院学报(自然科学版), 2007, 26(4): 425–428.WANG L J, WANG W, YE B Y. The FEM analysis and research of the corner structure of large deck opening ship [J]. Journal of Zhejiang Ocean University (Natural Science), 2007, 26(4): 425–428.