Loading [MathJax]/jax/output/SVG/jax.js

上海同步辐射光源高压相关线站概述

杨科 蒋升 闫帅 周春银 李爱国

杨科, 蒋升, 闫帅, 周春银, 李爱国. 上海同步辐射光源高压相关线站概述[J]. 高压物理学报, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584
引用本文: 杨科, 蒋升, 闫帅, 周春银, 李爱国. 上海同步辐射光源高压相关线站概述[J]. 高压物理学报, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584
GUO Lu, LIU Zhifang, LI Shiqiang, WU Guiying. Design and Energy Absorption Characteristic of Improved FCC Lattice Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 014206. doi: 10.11858/gywlxb.20210853
Citation: YANG Ke, JIANG Sheng, YAN Shuai, ZHOU Chunyin, LI Aiguo. Application of Shanghai Synchrotron Radiation Source in High Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584

上海同步辐射光源高压相关线站概述

doi: 10.11858/gywlxb.20200584
详细信息
    作者简介:

    杨 科(1978-),男,博士,研究员,主要从事同步辐射实验技术研究. E-mail:yangke@zjlab.org.cn

  • 中图分类号: O434.19; O521.3

Application of Shanghai Synchrotron Radiation Source in High Pressure Research

  • 摘要: 同步辐射X射线与基于金刚石对顶砧(DAC)和大体积压机(LVP)的静高压技术的结合推动了高压科学的发展。上海同步辐射光源(SSRF)是性能指标达到世界一流的中能第三代同步辐射光源,其中的硬X射线微聚焦及应用光束线站(BL15U1)具备高通量、能量可调的单色微束X射线,空间分辨达到微米至亚微米量级,在开展DAC高压研究方面有相当大的优势。自2010年对从事高压科学研究的用户开放以来,国内外高压科学研究者综合利用BL15U1线站高压实验方法取得了一系列有影响力的成果。此外,在建的上海光源二期线站工程中的超硬多功能线站(BL12SW)中配备200 t和2 000 t大压机,将成为开展LVP原位高压实验的有力平台。为促进用户对SSRF高压研究相关线站的了解,更好地利用相关平台开展研究工作,并为后续线站建设和实验方法发展提出宝贵建议,本文对BL15U1和BL12SW线站的布局、性能指标、实验站主要设施以及相关实验方法等进行了较为完整的介绍。

     

  • 钝感高能炸药(Insensitive high explosive, IHE)具有突出的安全性能[1],是目前最具影响力的高能材料,在国防工业和工程爆破中有着广泛应用,其冲击起爆特征受到广泛关注。深入了解炸药冲击起爆过程,对研究可靠起爆炸药、避免炸药在意外冲击下发生爆炸具有重要意义。

    隔层对冲击波具有明显的衰减效果,隔板起爆实验是研究炸药冲击起爆特性的有效方法之一[2],其中金属材料隔层广泛应用于冲击起爆实验。陈朗等[3]利用隔板实验对固体炸药的冲击起爆过程进行研究,得到了JO-9159炸药的起爆压力阈值和爆轰成长距离。胡湘渝等[4]运用DYNA2D程序对隔板实验过程进行了数值模拟,并与实验结果进行对比,较好地拟合了实验结果。郑波等[5]利用隔板实验对比探究了验证板对固体推进剂的冲击起爆影响。向梅等[6]通过数值模拟比较了铝、有机玻璃、钢隔层和未反应JB-9014炸药的爆轰反应边界值,发现有机玻璃对冲击波的衰减和铝近似,钢隔层对冲击波的衰减较快。以上研究均把隔层作为一种实验工具,没有针对隔层对冲击起爆的具体影响开展研究。

    在冲击起爆过程中,空气间隙是一个重要的干扰因素。空气间隙与隔层有较大差异,传爆药和隔层间的空气间隙不仅会使冲击波衰减,而且会使本来的冲击压缩过程转变成准等熵压缩[7]和冲击压缩两个过程。因此,探究空气间隙和金属隔层对冲击起爆的影响,对于研究炸药的冲击起爆特性具有重要意义。

    本研究以炸药驱动金属隔层和金属隔层冲击起爆B型炸药两个实验为基础,在实验中加入了空气间隙,通过对测得的金属隔层后界面速度和B型炸药的粒子速度进行分析,得到金属隔层和空气间隙对冲击起爆的影响。

    在火炮加载平台上对金属隔层和B型炸药进行冲击实验,采用光子多普勒测速仪[8-10](Photonic Doppler velocimetry, PDV)测量金属隔层和B型炸药样品的粒子速度。样品和PDV光纤探头粘贴于样品架,位置关系如图1所示。

    图  1  样品架
    Figure  1.  Sample holder

    实验分为3个过程,装置如图2所示。首先,测量金属隔层自由界面速度,如图2(a)所示,用飞片撞击尺寸为50 mm × 30 mm的 A型炸药,使其达到爆轰状态,爆轰波通过厚度为0.3 mm的空气间隙到达金属隔层,用PDV测量金属隔层自由界面速度,金属隔层自由界面速度的变化可以反映传爆药和金属隔层间的空气间隙对冲击波的影响,通过界面速度计算出透射压力,再根据入射压力得到金属隔层的冲击波透射率。其次,如图2(b)所示,在金属隔层后贴合如图3所示的台阶型B型炸药,台阶厚度分别为2、3、4、5、7和10 mm,每个台阶面粘贴尺寸为15 mm × 11 mm 的LiF窗口,通过PDV测速系统测量每个台阶样品和LiF窗口的界面速度,根据速度的变化,判断炸药的反应情况,得到传爆药和金属隔层间的空气间隙对冲击起爆的影响。最后,在金属隔层和B型炸药样品间增加一个0.22 mm厚的空气间隙,与上一过程中PDV测速系统测量得到的界面速度进行对比,得出金属隔层和B型炸药样品间的空气间隙对冲击起爆的影响。实验条件如表1所示。

    表  1  实验条件
    Table  1.  Experimental conditions
    Shot No.Dimensions/(mm × mm)Sample
    BoosterAir gapMetal compartmentAir gap
    0150 × 3050 × 3050 × 5
    0250 × 3050 × 3050 × 5
    0350 × 3050 × 3050 × 550 × 0.22Explosive B
    0450 × 3050 × 3050 × 5Explosive B
    下载: 导出CSV 
    | 显示表格
    图  2  装置示意图
    Figure  2.  Schematic of the experimental set-up
    图  3  台阶型炸药
    Figure  3.  Stage explosive

    通过解析解预先估算金属隔层的速度,根据声学近似理论[11],用等熵线方程描述爆轰产物,金属视为刚体,得到金属自由界面速度u

    u=Dj(1+θ1ηθlθDjt) (1)

    式中:Dj为A型炸药的爆轰速度;θη为过程量,θ=[1+2η(1l/Djt)]1/2η=m(k+1)k1/Mkkl 为装药长度;m为A型炸药的质量;M为金属片的质量;k为爆轰产物的多方气体指数;t为炸药起爆的零点时间。本研究中取Dj = 8.87 km/s,k = 3,l = 31.09 mm,m = 113.525 g,M = 179.47 g。

    DjkmMl的值代入式(1),得到u关于t的函数,根据该函数得出的金属隔层速度曲线解析解和由Shot 01、Shot 02测量得到的金属隔层自由界面中心点速度曲线如图4所示。

    图  4  金属自由界面速度
    Figure  4.  Free surface velocities of metal

    图4可知,测量得到的金属自由界面速度与理论计算得到的速度解析解相比有一定偏差,这是因为理论计算需要满足3个前提条件:(1)金属隔层为刚体;(2)爆轰波冲击绝热刚壁,反射冲击波的熵增极小,冲击波可视为波阵面上有间断的简单压缩波,爆轰产物的熵视为常数;(3)气体产物和被抛射物体都处于管内运动。上述条件与实际情况是不符合的。首先,金属并不是刚体,反应过程中有形变,其熵是减小的;其次,炸药的爆轰波存在尖峰,不是简单的压缩波;最后,本实验并非处于管内运动,实验空间是开放的,炸药质量应为有效部分质量mama小于炸药质量m。因此,解析解并不能反映爆炸的实际反应情况,只能用来估算最终的理论速度,且实际速度相较于理论值偏小。金属自由界面速度没有持续加速,只有一次起跳,是因为实验中使用的金属材料阻抗较大,且相对较厚,由后界面反射的冲击波在到达前界面的过程中,在金属隔层中衰减,冲击波到达自由界面时,比自由界面压力低,不能使自由界面速度加速。在爆轰产物的推动作用下,金属隔层保持匀速飞行。

    PDV测速系统测得的是金属后界面速度,根据应力波理论[12],冲击波后的粒子速度为后界面速度的1/2。由冲击波后粒子速度可以得到后界面的透射压力p2out

    p2out=ρ2Dt12u2=12(c2+12λ2u2)u2 (2)

    式中:ρ2为金属隔层密度,Dt为金属隔层冲击波速度,c2λ2为线性Hugoniot关系式中的常系数,u2为金属后界面速度。

    为了得到金属隔层的冲击波透射率,需要首先得到金属隔层的入射压强。可由A型炸药与金属隔层阻抗匹配[13]得出

    pj=12ut(ρ2Dt+ρ1Dj)=12ut[ρ2(c2+λ2ut)+ρ1Dj] (3)

    式中:pj为A型炸药的爆轰压力,ρ1为A型炸药密度,ut为金属隔层前界面粒子速度。

    pj数值见表2,其中,uj为炸药爆轰时的粒子速度,cj为炸药爆轰时的内部声速。把pj代入式(3),求得金属隔层前界面粒子速度ut。金属隔层的入射压力p2in可描述为

    表  2  A型炸药和JWL状态方程参数[14]
    Table  2.  Parameters of explosive A and JWL equation of state
    A/GPaB/GPaR1R2¯ωρ1/(g·cm–3)Dj/(km·s–1)uj/(km·s–1)cj/(km·s–1)pj/GPa
    934.77012.7234.61.10.371.8638.872.226.6536.8
    下载: 导出CSV 
    | 显示表格
    p2in=ρ2Dtut=ρ2(c2+λ2ut)ut (4)

    根据图4u2取图中速度起跳的最高点,把u2代入式(2),计算得出透射压力p2out,由式(4)计算得出入射压力p2in,结果列于表3

    表  3  第1次和第2次金属自由界面速度测试计算结果
    Table  3.  Computation results of the first and second test for free surface velocities of metal
    Shot No.u2/(km·s–1)D2/(km·s–1)p2in/ GPap2out/ GPaShot No.u2/(km·s–1)D2/(km·s–1)p2in/ GPap2out/ GPa
    011.0614.70368.82845.675020.9824.65468.82841.817
    1.1134.73468.82848.1931.0584.70068.82845.490
    0.9354.62568.82839.5541.1254.74268.82848.804
    1.1184.73868.82848.4751.1824.77768.82851.644
    1.1334.74668.82849.181
    1.0954.72368.82847.304
    下载: 导出CSV 
    | 显示表格

    图5图4中第3个点的速度开始增长时前面部分的放大图像。由图5可知,金属自由界面粒子速度刚开始增长的时候,并不是直接跳跃至最高点,而是经过一段平滑的曲线增长。这是由于在金属隔层和传爆药之间存在厚度为0.3 mm的空气间隙,当冲击波通过空气间隙时,对空气进行压缩,金属隔层压力的增加是连续的,可以把这个过程看作是对金属隔层进行准等熵压缩。

    图  5  金属自由界面速度局部放大
    Figure  5.  Local details for free surface velocities of metal

    同时,空气间隙也会使冲击波的幅值衰减,从冲击波传入空气间隙到传出这段时间,爆轰产物在空气间隙中膨胀,将其近似地视为等熵膨胀,在此期间压强的改变量Δp

    Δp=p¯vΔ¯v (5)

    式中:Δ¯v为空气间隙的厚度和装药厚度的比值。p由A型炸药的爆轰产物JWL状态方程表示

    p=A(1¯ωR1¯v)eR1¯v+B(1¯ωR2¯v)eR2¯v+¯ω¯ve0 (6)

    式中:ABR1R2¯ω为经验系数,¯v为爆轰产物的相对比容,e0为单位初始体积的比内能。对压强求相对体积的偏导可得

    p¯v=AR1(1¯ωR1¯v)eR1¯vBR2(1¯ωR2¯v)eR2¯v+A¯ωR1¯v2eR1¯v+B¯ωR2¯v2eR2¯v¯ω¯v2e0 (7)

    A型炸药的JWL状态方程参数如表2所示。

    Δ¯v和JWL状态方程参数代入式(5)和式(7),得到爆轰产物在空气间隙中做等熵膨胀时减少的压强ΔpΔp = –119.819 1 × 0.013 38 GPa = –1.598 2 GPa。将炸药和金属阻抗匹配后的入射压力近似地处理为p2inΔp之和,得到金属隔层厚度为5 mm时各个测量点的透射率η1,结果如表4所示。

    表  4  金属自由界面速度测试
    Table  4.  Test of free surface velocities of metal
    Shot No.p2in/GPap2out/GPaη1/%
    0167.23045.67567.94
    67.23048.19371.68
    67.23039.55458.83
    67.23048.47572.10
    67.23049.18173.15
    67.23047.30470.04
    0267.23041.81762.20
    67.23045.49067.66
    67.23048.80472.59
    67.23051.64476.82
    下载: 导出CSV 
    | 显示表格

    表4可知,金属隔层厚度为5 mm时,冲击波透射率范围为58.83%~76.82%,平均透射率为70.46%。考虑到侧向稀疏波影响,选择两次测试中心点的透射率,分别为72.10%和72.59%,取其平均值72.35%。

    分别测得金属隔层与台阶型样品炸药之间存在和不存在空气间隙情况下样品的后界面速度,如图6图7所示。

    图  6  炸药样品界面速度剖面
    Figure  6.  Interface velocities of the sample explosive
    图  7  不同厚度样品的界面速度对比
    Figure  7.  Interface velocities comparison of the sample with different thicknesses

    当金属隔层和B型炸药紧密贴合时,对样品炸药产生作用的是A型炸药爆轰后通过金属隔层传播的冲击波,图像显示为三角波。当金属隔层和B型炸药之间存在空气间隙时,金属隔层撞击B型炸药会产生一个持续的压力,输入的应是方波,由于本实验中空气间隙过小,仅为0.22 mm,因此未能形成方波。图7为不同厚度台阶面测试位置的速度对比图像。由图7可知,B型炸药厚度为2、3、5和10 mm时,当金属隔层和B型炸药之间有空气间隙时,第一次起跳的速度高于没有空气间隙,这是由于金属隔层在通过空气间隙时产生了加速。

    图6可知,厚度小于7 mm的样品后界面速度都出现了二次起跳,波系图如图8所示。因为LiF窗口和金属隔层的阻抗比A型炸药的阻抗高,均会对冲击波产生反射;B型炸药处于高温高压的爆轰状态时,在金属前界面也会反射冲击波。利用式(8)、式(9)、式(10)可以估算金属隔层后界面反射的冲击波二次起跳的间隔时间Δt。取没有空气间隙、样品厚度为3 mm的后界面粒子速度692.48 m/s,代入式(8)、式(9)、式(10),得到冲击二次起跳间隔时间为0.94 μs,如果是金属隔层前界面反射的冲击波,二次起跳间隔时间还会增加1 μs左右。表5列出了从图像得到的二次起跳的间隔时间,和理论计算基本一致,所以二次起跳是由金属隔层后界面反射的冲击波引起的。

    表  5  起跳间隔时间
    Table  5.  Interval between two accelerations
    Step thickness/mmInterval/μs
    1st test2nd test
    20.7600.559
    30.9000.882
    41.3351.300
    51.6251.629
    下载: 导出CSV 
    | 显示表格
    图  8  波系图
    Figure  8.  Wave interaction diagram
    t3=hD3 (8)
    Δt1=hutt3D3u3+ut+hutt3D3 (9)
    Δt2=hut(t3+Δt1)D3 (10)

    式中:t3为冲击波从金属隔层后界面到达LiF窗口的时间,h为样品台阶厚度,D3为样品冲击波速度,Δt1为冲击波从LiF窗口到达金属后界面的时间,Δt2为冲击波从金属后界面反射后追到样品粒子的时间。

    表5可知,台阶样品厚度从2 mm增加到5 mm时,二次起跳的时间间隔逐渐增加,这是由于随着台阶厚度的增加,冲击波反射时间变长。在台阶样品厚度为7 mm和10 mm时,没有观察到二次起跳现象,这是因为相较于前面的台阶,7 mm和10 mm台阶相对较厚,冲击波追赶粒子所需的时间更长,所以在光纤探头能够测量的时间范围内冲击波未能追到后界面的粒子。

    由于这4次实验都是利用飞片起爆A型炸药,然后通过空气间隙和金属隔层,所以Shot 01、Shot 02和Shot 03、Shot 04实验中金属隔层的速度相同。根据金属后界面自由速度对台阶型B型炸药进行阻抗匹配,将B型炸药参数(ρ = 1.893 g/cm3, c = 2.418 77 km/s, λ = 2.139 61)[15]代入式(3),得到B型炸药的前界面粒子速度u3为0.980 km/s,冲击波速度D3为4.515 km/s,入射压强p3为8.389 GPa。 如图6所示,仅台阶厚度为10 mm的B型炸药样品的后界面速度有上升趋势,说明当入射压力为8.389 GPa时,反应发生在样品厚度为7~10 mm之间的某个位置。

    在火炮平台上进行了一系列一维平面冲击实验。采用PDV测速系统对金属隔层自由界面速度和B型炸药后界面速度进行了测量,得到了速度随时间变化曲线,由此分析得出以下结论。

    (1)运用阻抗匹配方法,根据金属隔层后界面速度和A型炸药爆轰粒子速度,得到了金属隔层的透射压力和入射压力,进而计算得到金属隔层厚度为5 mm时冲击波的透射率为72.35%;

    (2)传爆药和金属隔层之间的空气间隙使原本的冲击压缩过程转变为准等熵压缩和冲击压缩两个过程,同时使冲击波的幅值减小;

    (3)金属隔层和B型炸药间存在较小空气间隙时,会使金属隔层产生加速,炸药更加容易反应;

    (4)当金属隔层厚度为5 mm,并且存在空气间隙时,A型炸药不能使厚度为10 mm的B型炸药达到爆轰状态。

  • 图  HXMF光束线布局

    Figure  1.  Schematic layout of HXMF beamline

    图  HXMF实验站布局

    Figure  2.  Schematic layout of HXMF experimental station

    图  HXMF实验站照片

    Figure  3.  Photo of HXMF experimental station

    图  红宝石荧光测压光路

    Figure  4.  Optical system for measuring ruby fluorescence

    图  Renishaw拉曼光谱仪

    Figure  5.  Renishaw Raman spectrometer

    图  便携式红宝石测压系统

    Figure  6.  Portable ruby high pressure calibration system

    图  HXMF实验站样品控制平台示意图

    Figure  7.  Schematic of sample stages of HXMF experimental station

    图  HXMF实验站六轴样品控制台

    Figure  8.  Six axis sample stages of HXMF experimental station

    图  样品架结构的爆炸视图

    Figure  9.  Explosion view of sample holder structure

    图  10  DAC高压装置

    Figure  10.  High pressure device of DAC

    图  11  二氧化铈的XRD谱(Mar165 CCD共有2048 × 2048个像素点,每个像素点尺寸为80 μm× 80 μm)

    Figure  11.  XRD pattern of CeO2 (Mar165 CCD has 2048 × 2048 pixels, the size of each pixel is 80 μm× 80 μm)

    图  12  HXMF实验系统的笛卡尔坐标系和旋转自由度

    Figure  12.  Cartesian coordinate system and rotational degrees of freedom of HXMF experimental system

    图  13  高压单晶衍射样品控制平台

    Figure  13.  Sample control platform for high pressure single crystal diffraction

    图  14  HXMF线站可分析的元素

    Figure  14.  Analyzable elements of HXMF beamline

    图  15  超硬多功能光束线布局

    Figure  15.  Schematic layout of super-hard multifunction beamline

    图  16  高压原位实验站实验方法

    Figure  16.  Experimental methods of in situ high pressure experimental station

    图  17  200 t压机示意图(图片来源:Max Voggenreiter)

    Figure  17.  Schematic diagram of 200 t LVP (Image source: Max Voggenreiter)

    图  18  2000 t压机示意图(图片来源:Max Voggenreiter)

    Figure  18.  Schematic diagram of 2000 t LVP (Image source:Max Voggenreiter)

    表  1  HXMF线站的主要指标

    Table  1.   Main parameters of HXMF beamline

    Light source typeEnergy/
    keV
    Energy resolution
    (ΔE/E)
    Photon flux/[phs·s−1·μm−2·
    (0.1%B.W.)−1]
    Beam size at sample/
    (μm × μm)
    Divergence at sample/
    (mrad × mrad)
    Undulator5−20 < 2 × 10−4
    Si (111)
    > 1012 < 2 × 2
    (K-B mirrors)
    < 2 (H) × 1.5 (V)
    (K-B mirrors)
    下载: 导出CSV

    表  2  超硬多功能线站的技术指标

    Table  2.   Technical specification of super-hard multifunction station

    Energy/keVEnergy resolution (ΔE/E)Photon flux/(phs·s−1@100 keV@25 μrad)Spot size at sample/(mm×mm)
    30−150 < 9 × 10−32 × 10110.5 × 0.5(Focused mode);
    Max:100 (H) × 30 (V)
    (Non-focusing mode)
    下载: 导出CSV
  • [1] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Review of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007
    [2] MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase V of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701
    [3] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
    [4] 吉诚, 李冰, 杨文革, 等. 静态超高压下氢的晶体结构实验研究 [J]. 高压物理学报, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520

    JI C, LI B, YANG W G, et al. Crystallographic studies of ultra-dense solid hydrogen [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520
    [5] 耿华运, 孙毅. 氢的高压奇异结构与金属化 [J]. 高压物理学报, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674

    GENG H Y, SUN Y. On the novel structure and metallization of hydrogen under high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
    [6] CELLIERS P M, MILLOT M, BRYGOO S, et al. Insulator-metal transition in dense fluid deuterium [J]. Science, 2018, 361(6403): 677–682. doi: 10.1126/science.aat0970
    [7] SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
    [8] GONCHAROV A F, STRUZHKIN V V. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): 9736.
    [9] ASHCROFT N W. Condensed-matter physics: pressure for change in metals [J]. Nature, 2009, 458(7235): 158–159. doi: 10.1038/458158a
    [10] HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
    [11] MAO H K, HEMLEY R J. The high-pressure dimension in earth and planetary science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9114–9115. doi: 10.1073/pnas.0703653104.
    [12] 李子军, 李岗. InAs晶体二维自旋磁极化子自陷能的磁温效应 [J]. 高压物理学报, 2005, 19(1): 45–50. doi: 10.11858/gywlxb.2005.01.009

    LI Z J, LI G. Magnetic field and temperature effects on the self-trapping energy of the 2-D spin magnetopolaron in an InAs crystal [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 45–50. doi: 10.11858/gywlxb.2005.01.009
    [13] SHI J M, CUI W W, HAO J, et al. Formation of ammonia-helium compounds at high pressure [J]. Nature Communications, 2020, 11(1): 3164. doi: 10.1038/s41467-020-16835-z
    [14] LOU H B, ZENG Z D, ZHANG F, et al. Two-way tuning of structural order in metallic glasses [J]. Nature Communications, 2020, 11(1): 314. doi: 10.1038/s41467-019-14129-7
    [15] 郜浩安, 马帅领, 包括, 等. 高硬度超导三元碳化物的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633

    GAO H A, MA S L, BAO K, et al. Synthesis of hard superconductive ternary transition metal carbide under high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633
    [16] 毕延, 经福谦. 动高压物理在地球与行星科学研究中的应用 [J]. 地学前缘, 2005, 12(1): 79–92. doi: 10.3321/j.issn:1005-2321.2005.01.012

    BI Y, JING F Q. Application of dynamic high-pressure physics to Earth and Planetary Science studies [J]. Earth Science Frontiers, 2005, 12(1): 79–92. doi: 10.3321/j.issn:1005-2321.2005.01.012
    [17] BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163–186. doi: 10.1080/08957950802597239
    [18] DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Toroidal diamond anvil cell for detailed measurements under extreme static pressures [J]. Nature Communications, 2018, 9(1): 2913. doi: 10.1038/s41467-018-05294-2
    [19] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
    [20] JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9(1): 3563. doi: 10.1038/s41467-018-06071-x
    [21] 王雁宾. 地球内部物质物性的原位高温高压研究: 大体积压机与同步辐射源的结合 [J]. 地学前缘, 2006, 13(2): 1–36. doi: 10.3321/j.issn:1005-2321.2006.02.002

    WANG Y B. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of Earth materials under high pressure and temperature [J]. Earth Science Frontiers, 2006, 13(2): 1–36. doi: 10.3321/j.issn:1005-2321.2006.02.002
    [22] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600

    PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600
    [23] GUIGNARD J, CRICHTON W A. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a high pressure-high temperature deformation apparatus [J]. Review of Scientific Instruments, 2015, 86(8): 085112. doi: 10.1063/1.4928151
    [24] LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254. doi: 10.1080/08957959.2012.657634
    [25] REN D S, LI H P, SHAN S M. The application of manganin wire pressure gauges in a large volume press under high-temperature conditions [J]. High Pressure Research, 2019, 39(4): 619–627. doi: 10.1080/08957959.2019.1674297
    [26] NIELSEN M B, CERESOLI D, PARISIADES P, et al. Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature [J]. Physical Review B, 2014, 90(21): 214101. doi: 10.1103/PhysRevB.90.214101
    [27] AKAHAMA Y, KAWAMURA H. Pressure calibration of diamond anvil Raman gauge to 410 GPa [J]. Journal of Physics: Conference Series, 2010, 215: 012195. doi: 10.1088/1742-6596/215/1/012195
    [28] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160
    [29] 王雁宾. 利用大体积压机与同步辐射进行原位高温高压研究——地球内部物质物性研究的应用 [J]. 物理, 2006, 35(7): 570–578. doi: 10.3321/j.issn:0379-4148.2006.07.010

    WANG Y B. High-pressure, high-temperature research using the large-volume press combined with synchrotron radiation: applications to studies of physical properties of Earth materials [J]. Physics, 2006, 35(7): 570–578. doi: 10.3321/j.issn:0379-4148.2006.07.010
    [30] ZHOU X F, MA D J, WANG L F, et al. Large-volume cubic press produces high temperatures above 4 000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118. doi: 10.1063/1.5128190
    [31] ZHANG Q C, LI R, GU X, et al. Thermal analysis of the growth process of synthetic diamond in the large volume cubic press apparatus with large deformation of high pressure cell [J]. Journal of Crystal Growth, 2015, 420: 80–83. doi: 10.1016/j.jcrysgro.2015.03.036
    [32] YU T, WANG Y B, RIVERS M L, et al. An upgraded and integrated large-volume high-pressure facility at the GeoSoilEnviroCARS bending magnet beamline of the Advanced Photon Source [J]. Comptes Rendus Geoscience, 2019, 351(2/3): 269–279. doi: 10.1016/j.crte.2018.09.006
    [33] MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131
    [34] WANG L, DING Y, YANG W G, et al. Nanoprobe measurements of materials at megabar pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6140–6145. doi: 10.1073/pnas.1001141107
    [35] 徐济安, 毕延. 同步辐射X射线光源在高压科学研究中的应用 [J]. 物理, 2012, 41(4): 218–226.

    XU J A, BI Y. Application of synchrotron radiation X-ray sources in high pressure research [J]. Physics, 2012, 41(4): 218–226.
    [36] ANDRAULT D, ANTONANGELI D, DMITRIEV V, et al. Science under extreme conditions of pressures and temperatures at the ESRF [J]. Synchrotron Radiation News, 2013, 26(5): 39–44. doi: 10.1080/08940886.2013.832591
    [37] SHEN G, PRAKAPENKA V B, ENG P J, et al. Facilities for high-pressure research with the diamond anvil cell at GSECARS [J]. Journal of Synchrotron Radiation, 2005, 12(5): 642–649. doi: 10.1107/S0909049505022442
    [38] SHEN G Y, CHOW P, XIAO Y M, et al. HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source [J]. High Pressure Research, 2008, 28(3): 145–162. doi: 10.1080/08957950802208571
    [39] EHM L, VAUGHAN M, DUFFY T, et al. High-pressure research at the national synchrotron light source [J]. Synchrotron Radiation News, 2010, 23(3): 24–30. doi: 10.1080/08940886.2010.485520
    [40] HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-Ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038
    [41] LIU J. High pressure X-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
    [42] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018
    [43] JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-DOI:
    [44] SUN L L, CHEN X J, GUO J, et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides [J]. Nature, 2012, 483(7387): 67–69. doi: 10.1038/nature10813
    [45] GUO J, CHEN X J, DAI J H, et al. Pressure-driven quantum criticality in iron-selenide superconductors [J]. Physical Review Letters, 2012, 108(19): 197001. doi: 10.1103/PhysRevLett.108.197001
    [46] ZHANG L L, YAN S, JIANG S, et al. Hard X-ray micro-focusing beamline at SSRF [J]. Nuclear Science and Techniques, 2015, 26(6): 060101. doi: 10.13538/j.1001-8042/nst.26.060101
    [47] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  11073
  • HTML全文浏览量:  3753
  • PDF下载量:  152
出版历程
  • 收稿日期:  2020-07-03
  • 修回日期:  2020-08-04

目录

/

返回文章
返回