Application of Shanghai Synchrotron Radiation Source in High Pressure Research
-
摘要: 同步辐射X射线与基于金刚石对顶砧(DAC)和大体积压机(LVP)的静高压技术的结合推动了高压科学的发展。上海同步辐射光源(SSRF)是性能指标达到世界一流的中能第三代同步辐射光源,其中的硬X射线微聚焦及应用光束线站(BL15U1)具备高通量、能量可调的单色微束X射线,空间分辨达到微米至亚微米量级,在开展DAC高压研究方面有相当大的优势。自2010年对从事高压科学研究的用户开放以来,国内外高压科学研究者综合利用BL15U1线站高压实验方法取得了一系列有影响力的成果。此外,在建的上海光源二期线站工程中的超硬多功能线站(BL12SW)中配备200 t和2 000 t大压机,将成为开展LVP原位高压实验的有力平台。为促进用户对SSRF高压研究相关线站的了解,更好地利用相关平台开展研究工作,并为后续线站建设和实验方法发展提出宝贵建议,本文对BL15U1和BL12SW线站的布局、性能指标、实验站主要设施以及相关实验方法等进行了较为完整的介绍。Abstract: The combination of synchrotron X-ray radiation and static high pressure technology based on diamond anvil cell (DAC) and large volume press (LVP) has fundamentally promoted the development of high pressure science. Shanghai Synchrotron Radiation Facility (SSRF) is one of the advanced third generation light sources in the world, the hard X-ray micro-focusing beamline (BL15U1) of SSRF provides a monochromatic micro X-ray beam with high flux and adjustable energy, whose spatial resolution reaches the order of micrometer to submicron, and it has considerable advantages in DAC high-pressure experiments. Since it provided beamline time to high-pressure researchers in 2010, a series of influential achievements have been produced by using the related high pressure experimental methods at BL15U1. Moreover, the ultra-hard X-ray multi-functional beamline (BL12SW) in SSRF phase II is equipped with 200 t and 2000 t of LVP, which is a powerful platform for LVP experiments. In order to promote high pressure researchers to have a full understanding of the high pressure beamline at SSRF and make better use of relevant platforms to carry out research work, as well as to put forward valuable suggestions for the follow-up beamline construction and the development of experimental methods. In this paper, the layout, beamline specifications, main facilities and related experimental methods of BL15U1 and BL12SW beamlines are introduced in detail.
-
Key words:
- Shanghai synchrotron radiation /
- high pressure /
- beamlines /
- diamond anvil cell /
- large volume press
-
表 1 HXMF线站的主要指标
Table 1. Main parameters of HXMF beamline
Light source type Energy/
keVEnergy resolution
($ {\text{Δ}}E/E$)Photon flux/[phs·s−1·$ {\text{μ}}{\rm{m}}$−2·
(0.1%B.W.)−1]Beam size at sample/
(μm × μm)Divergence at sample/
(mrad × mrad)Undulator 5−20 < 2 × 10−4
Si (111)> 1012 < 2 × 2
(K-B mirrors)< 2 (H) × 1.5 (V)
(K-B mirrors)表 2 超硬多功能线站的技术指标
Table 2. Technical specification of super-hard multifunction station
Energy/keV Energy resolution ($ {\text{Δ}}E/E$) Photon flux/(phs·s−1@100 keV@25 μrad) Spot size at sample/(mm×mm) 30−150 < 9 × 10−3 2 × 1011 0.5 × 0.5(Focused mode);
Max:100 (H) × 30 (V)
(Non-focusing mode) -
[1] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Review of Modern Physics, 2018, 90(1): 015007. doi: 10.1103/RevModPhys.90.015007 [2] MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase V of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701 [3] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164 [4] 吉诚, 李冰, 杨文革, 等. 静态超高压下氢的晶体结构实验研究 [J]. 高压物理学报, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520JI C, LI B, YANG W G, et al. Crystallographic studies of ultra-dense solid hydrogen [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 020101. doi: 10.11858/gywlxb.20200520 [5] 耿华运, 孙毅. 氢的高压奇异结构与金属化 [J]. 高压物理学报, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674GENG H Y, SUN Y. On the novel structure and metallization of hydrogen under high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674 [6] CELLIERS P M, MILLOT M, BRYGOO S, et al. Insulator-metal transition in dense fluid deuterium [J]. Science, 2018, 361(6403): 677–682. doi: 10.1126/science.aat0970 [7] SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101 [8] GONCHAROV A F, STRUZHKIN V V. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): 9736. [9] ASHCROFT N W. Condensed-matter physics: pressure for change in metals [J]. Nature, 2009, 458(7235): 158–159. doi: 10.1038/458158a [10] HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501 [11] MAO H K, HEMLEY R J. The high-pressure dimension in earth and planetary science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9114–9115. doi: 10.1073/pnas.0703653104. [12] 李子军, 李岗. InAs晶体二维自旋磁极化子自陷能的磁温效应 [J]. 高压物理学报, 2005, 19(1): 45–50. doi: 10.11858/gywlxb.2005.01.009LI Z J, LI G. Magnetic field and temperature effects on the self-trapping energy of the 2-D spin magnetopolaron in an InAs crystal [J]. Chinese Journal of High Pressure Physics, 2005, 19(1): 45–50. doi: 10.11858/gywlxb.2005.01.009 [13] SHI J M, CUI W W, HAO J, et al. Formation of ammonia-helium compounds at high pressure [J]. Nature Communications, 2020, 11(1): 3164. doi: 10.1038/s41467-020-16835-z [14] LOU H B, ZENG Z D, ZHANG F, et al. Two-way tuning of structural order in metallic glasses [J]. Nature Communications, 2020, 11(1): 314. doi: 10.1038/s41467-019-14129-7 [15] 郜浩安, 马帅领, 包括, 等. 高硬度超导三元碳化物的高温高压合成 [J]. 高压物理学报, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633GAO H A, MA S L, BAO K, et al. Synthesis of hard superconductive ternary transition metal carbide under high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023301. doi: 10.11858/gywlxb.20170633 [16] 毕延, 经福谦. 动高压物理在地球与行星科学研究中的应用 [J]. 地学前缘, 2005, 12(1): 79–92. doi: 10.3321/j.issn:1005-2321.2005.01.012BI Y, JING F Q. Application of dynamic high-pressure physics to Earth and Planetary Science studies [J]. Earth Science Frontiers, 2005, 12(1): 79–92. doi: 10.3321/j.issn:1005-2321.2005.01.012 [17] BASSETT W A. Diamond anvil cell, 50th birthday [J]. High Pressure Research, 2009, 29(2): 163–186. doi: 10.1080/08957950802597239 [18] DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Toroidal diamond anvil cell for detailed measurements under extreme static pressures [J]. Nature Communications, 2018, 9(1): 2913. doi: 10.1038/s41467-018-05294-2 [19] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115 [20] JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9(1): 3563. doi: 10.1038/s41467-018-06071-x [21] 王雁宾. 地球内部物质物性的原位高温高压研究: 大体积压机与同步辐射源的结合 [J]. 地学前缘, 2006, 13(2): 1–36. doi: 10.3321/j.issn:1005-2321.2006.02.002WANG Y B. Combining the large-volume press with synchrotron radiation: applications to in-situ studies of Earth materials under high pressure and temperature [J]. Earth Science Frontiers, 2006, 13(2): 1–36. doi: 10.3321/j.issn:1005-2321.2006.02.002 [22] 彭放, 贺端威. 应用于高压科学研究的国产铰链式六面顶压机技术发展历程 [J]. 高压物理学报, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600PENG F, HE D W. Development of domestic hinge-type cubic presses based on high pressure scientific research [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010105. doi: 10.11858/gywlxb.20170600 [23] GUIGNARD J, CRICHTON W A. The large volume press facility at ID06 beamline of the European synchrotron radiation facility as a high pressure-high temperature deformation apparatus [J]. Review of Scientific Instruments, 2015, 86(8): 085112. doi: 10.1063/1.4928151 [24] LIU X, CHEN J L, TANG J J, et al. A large volume cubic press with a pressure-generating capability up to about 10 GPa [J]. High Pressure Research, 2012, 32(2): 239–254. doi: 10.1080/08957959.2012.657634 [25] REN D S, LI H P, SHAN S M. The application of manganin wire pressure gauges in a large volume press under high-temperature conditions [J]. High Pressure Research, 2019, 39(4): 619–627. doi: 10.1080/08957959.2019.1674297 [26] NIELSEN M B, CERESOLI D, PARISIADES P, et al. Phase stability of the SrMnO3 hexagonal perovskite system at high pressure and temperature [J]. Physical Review B, 2014, 90(21): 214101. doi: 10.1103/PhysRevB.90.214101 [27] AKAHAMA Y, KAWAMURA H. Pressure calibration of diamond anvil Raman gauge to 410 GPa [J]. Journal of Physics: Conference Series, 2010, 215: 012195. doi: 10.1088/1742-6596/215/1/012195 [28] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3: 1163. doi: 10.1038/ncomms2160 [29] 王雁宾. 利用大体积压机与同步辐射进行原位高温高压研究——地球内部物质物性研究的应用 [J]. 物理, 2006, 35(7): 570–578. doi: 10.3321/j.issn:0379-4148.2006.07.010WANG Y B. High-pressure, high-temperature research using the large-volume press combined with synchrotron radiation: applications to studies of physical properties of Earth materials [J]. Physics, 2006, 35(7): 570–578. doi: 10.3321/j.issn:0379-4148.2006.07.010 [30] ZHOU X F, MA D J, WANG L F, et al. Large-volume cubic press produces high temperatures above 4 000 Kelvin for study of the refractory materials at pressures [J]. Review of Scientific Instruments, 2020, 91(1): 015118. doi: 10.1063/1.5128190 [31] ZHANG Q C, LI R, GU X, et al. Thermal analysis of the growth process of synthetic diamond in the large volume cubic press apparatus with large deformation of high pressure cell [J]. Journal of Crystal Growth, 2015, 420: 80–83. doi: 10.1016/j.jcrysgro.2015.03.036 [32] YU T, WANG Y B, RIVERS M L, et al. An upgraded and integrated large-volume high-pressure facility at the GeoSoilEnviroCARS bending magnet beamline of the Advanced Photon Source [J]. Comptes Rendus Geoscience, 2019, 351(2/3): 269–279. doi: 10.1016/j.crte.2018.09.006 [33] MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131 [34] WANG L, DING Y, YANG W G, et al. Nanoprobe measurements of materials at megabar pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6140–6145. doi: 10.1073/pnas.1001141107 [35] 徐济安, 毕延. 同步辐射X射线光源在高压科学研究中的应用 [J]. 物理, 2012, 41(4): 218–226.XU J A, BI Y. Application of synchrotron radiation X-ray sources in high pressure research [J]. Physics, 2012, 41(4): 218–226. [36] ANDRAULT D, ANTONANGELI D, DMITRIEV V, et al. Science under extreme conditions of pressures and temperatures at the ESRF [J]. Synchrotron Radiation News, 2013, 26(5): 39–44. doi: 10.1080/08940886.2013.832591 [37] SHEN G, PRAKAPENKA V B, ENG P J, et al. Facilities for high-pressure research with the diamond anvil cell at GSECARS [J]. Journal of Synchrotron Radiation, 2005, 12(5): 642–649. doi: 10.1107/S0909049505022442 [38] SHEN G Y, CHOW P, XIAO Y M, et al. HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source [J]. High Pressure Research, 2008, 28(3): 145–162. doi: 10.1080/08957950802208571 [39] EHM L, VAUGHAN M, DUFFY T, et al. High-pressure research at the national synchrotron light source [J]. Synchrotron Radiation News, 2010, 23(3): 24–30. doi: 10.1080/08940886.2010.485520 [40] HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-Ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038 [41] LIU J. High pressure X-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106 [42] HU Q Y, KIM D Y, YANG W G, et al. FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles [J]. Nature, 2016, 534(7606): 241–244. doi: 10.1038/nature18018 [43] JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-DOI: [44] SUN L L, CHEN X J, GUO J, et al. Re-emerging superconductivity at 48 kelvin in iron chalcogenides [J]. Nature, 2012, 483(7387): 67–69. doi: 10.1038/nature10813 [45] GUO J, CHEN X J, DAI J H, et al. Pressure-driven quantum criticality in iron-selenide superconductors [J]. Physical Review Letters, 2012, 108(19): 197001. doi: 10.1103/PhysRevLett.108.197001 [46] ZHANG L L, YAN S, JIANG S, et al. Hard X-ray micro-focusing beamline at SSRF [J]. Nuclear Science and Techniques, 2015, 26(6): 060101. doi: 10.13538/j.1001-8042/nst.26.060101 [47] MAO H K, XU J, BELL P M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions [J]. Journal of Geophysical Research, 1986, 91(B5): 4673–4676. doi: 10.1029/JB091iB05p04673