仿生BCC结构的准静态压缩数值模拟及吸能性

吴伟 张辉 曹美文 张霞 陈飞 梁清香 常超

吴伟, 张辉, 曹美文, 张霞, 陈飞, 梁清香, 常超. 仿生BCC结构的准静态压缩数值模拟及吸能性[J]. 高压物理学报, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578
引用本文: 吴伟, 张辉, 曹美文, 张霞, 陈飞, 梁清香, 常超. 仿生BCC结构的准静态压缩数值模拟及吸能性[J]. 高压物理学报, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578
WU Wei, ZHANG Hui, CAO Meiwen, ZHANG Xia, CHEN Fei, LIANG Qingxiang, CHANG Chao. Numerical Simulation of Quasi-Static Compression and Energy Absorption of Bionic BCC Structure[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578
Citation: WU Wei, ZHANG Hui, CAO Meiwen, ZHANG Xia, CHEN Fei, LIANG Qingxiang, CHANG Chao. Numerical Simulation of Quasi-Static Compression and Energy Absorption of Bionic BCC Structure[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 062402. doi: 10.11858/gywlxb.20200578

仿生BCC结构的准静态压缩数值模拟及吸能性

doi: 10.11858/gywlxb.20200578
基金项目: 山西省高等学校科技创新项目(2019L0624)
详细信息
    作者简介:

    吴 伟(1995-),男,硕士研究生,主要从事金属材料的力学行为研究.E-mail:2451422393@qq.com

    通讯作者:

    常 超(1986-),男,博士研究生,副教授,主要从事金属材料的力学行为研究. E-mail:cc@tyust.edu.cn

  • 中图分类号: O341

Numerical Simulation of Quasi-Static Compression and Energy Absorption of Bionic BCC Structure

  • 摘要: 晶格点阵结构因具有质量轻、吸能性好等优点,被广泛应用于航空、航天、军工等领域。研究了仿生体心立方(BCC)结构的吸能性,并探讨了截面形貌对BCC晶格结构吸能性的影响。基于毛竹的宏观结构和细观结构,设计了3种不同的BCC仿竹晶格点阵结构,对3种结构及原始BCC晶格结构进行了轴向准静态压缩数值模拟。结果表明:静载下仿竹BCC结构的吸能性和比吸能均比原始BCC结构提高了25%以上,但3种仿竹BCC结构的吸能性、比吸能相差不大;仿竹BCC结构的相对密度对其吸能性和比吸能的影响较大;在压缩过程中,仿生结构的韧性截面有效保证了塌陷稳定性,这是该结构吸能稳定的重要原因。

     

  • 图  成年毛竹的宏观结构(a)和竹壁截面的细观结构(b)以及1/4部分的3种截面(c)

    Figure  1.  Macro structure of adult phyllostachys pubescens (a) and mesoscopic structure ofbamboo wall section (b),three cross sections representing 1/4 part (c)

    图  晶格结构示意图:(a)原始BCC晶格结构,(b)空心结构,(c)Ⅰ型结构,(d)Ⅱ型结构

    Figure  2.  Schematic of the lattice structure: (a) original BCC structure, (b) hollow structure, (c) type I structure, (d) type II structure

    图  晶格结构准静态压缩有限元模型

    Figure  3.  Quasi-static compression finite elementmodel of lattice structure

    图  4种结构的网格模型

    Figure  4.  Grid models of four structures

    图  网格尺寸敏感性分析

    Figure  5.  Sensitivity analysis of grid size

    图  验证试样及其实验和数值模拟对比

    Figure  6.  Validated samples and comparison of the experiments and numerical simulations

    图  4种相对密度下晶格结构的应力-应变曲线

    Figure  7.  Stress-strain curves of lattice structure under four relative densities

    图  相对密度为22%的4种结构的能量吸收曲线

    Figure  8.  Energy absorption curves of four structures with a relative density of 22%

    图  4种晶格结构的能量吸收

    Figure  9.  Energy absorption of four lattice structures

    图  10  4种晶格结构的比吸能

    Figure  10.  Specific energy absorption of thefour lattice structures

    图  11  Ⅰ型晶格结构变形模式和应力云图

    Figure  11.  The deformation mode and strain nephogramof the typeⅠlattice structure

    表  1  晶格结构的物理参数

    Table  1.   Physical parameters of the lattice structure

    Lattice
    structure
    Relative
    density/%
    Diameter/mmCross-sectional
    area/mm2
    Thickness/mmMinimum
    thickness/mm
    Original structure131.66
    151.81
    192.08
    222.25
    Hollow
    structure
    1326.560.35
    1530.880.41
    1938.560.54
    2243.580.64
    Type Ⅰ
    structure
    1324.070.06
    1527.800.07
    1936.640.10
    2241.920.12
    Type Ⅱ
    structure
    1323.840.10
    1528.220.13
    1936.130.17
    2241.410.20
    下载: 导出CSV

    表  2  晶格结构在0 < ε < 0.4范围内的能量吸收和比吸能

    Table  2.   Energy absorption and specific energy absorption of lattice structure at 0 < ε < 0.4

    Lattice structureMass/gEA/MJESA/(MJ·g–1)
    Original structure7.9848.136.03
    9.5354.395.71
    12.2168.515.62
    13.9881.725.85
    Hollow structure8.1478.139.60
    9.5586.589.07
    12.23105.688.64
    14.04114.658.17
    Type I structure8.1478.629.66
    9.4088.149.38
    Type I structure12.3997.837.90
    14.16105.647.46
    Type Ⅱ structure8.0479.219.85
    9.5887.299.11
    12.2699.528.12
    14.04103.167.35
    下载: 导出CSV
  • [1] CAO X F, DUAN S Y, LIANG J, et al. Mechanical properties of an improved 3D-printed rhombic dodecahedron stainless steel lattice structure of variable cross section [J]. International Journal of Mechanical Sciences, 2018, 145: 53–63. doi: 10.1016/j.ijmecsci.2018.07.006
    [2] BAI L, YI C Y, CHEN X H, et al. Effective design of the graded strut of BCC lattice structure for improving mechanical properties [J]. Materials, 2019, 12: 2192. doi: 10.3390/ma12132192
    [3] LI P F. Simulating the dynamic deformation behaviour of selective laser melted stainless steel microlattice structures [J]. 2016.
    [4] TSOPANOS S, MINES R A W, MCKOWN S, et al. The influence of processing parameters on the mechanical properties of selectively laser melted stainless steel microlattice structures [J]. Journal of Manufacturing Science and Engineering, 2010, 132(4): 041011. doi: 10.1115/1.4001743
    [5] JIN N, WANG F C, WANG Y W, et al. Failure and energy absorption characteristics of four lattice structures under dynamic loading [J]. Materials & Design, 2019, 169: 107655. doi: 10.1016/j.matdes.2019.107655
    [6] 郝美荣. 菠萝叶纤维增强点阵圆筒结构的平压性能研究 [D]. 哈尔滨: 东北林业大学, 2017.

    HAO M R. Compression performance of pineapple leaf fiber reinforced lattice cylinder [D]. Harbin: Northeast Forestry University, 2017.
    [7] TSANG H H, RAZA S. Impact energy absorption of bio-inspired tubular sections with structural hierarchy [J]. Composite Structures, 2018, 195: 199–210. doi: 10.1016/j.compstruct.2018.04.057
    [8] ZOU M, XU S C, WEI C G, et al. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo [J]. Thin-Walled Structures, 2016, 101: 222–230. doi: 10.1016/j.tws.2015.12.023
    [9] LIU Q, MA J B, HE Z H, et al. Energy absorption of bio-inspired multi-cell CFRP and aluminum square tubes [J]. Composites Part B: Engineering, 2017, 121: 134–144. doi: 10.1016/j.compositesb.2017.03.034
    [10] TAO Y, LI W G, WEI K, et al. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression [J]. Composites Part B: Engineering, 2019, 176: 107219. doi: 10.1016/j.compositesb.2019.107219
    [11] 魏灿刚. 仿竹结构薄壁管的耐撞性设计和分析 [D]. 长春: 吉林大学, 2014.

    WEI C G. Crashworthiness bionic design and analysis of thin-walled tube inspired by bamboo structure [D]. Changchun: Jilin University, 2014.
    [12] HABIB F N, IOVENITTI P, MASOOD S H, et al. Fabrication of polymeric lattice structures for optimum energy absorption using Multi Jet Fusion technology [J]. Materials & Design, 2018, 155: 86–98. doi: 10.1016/j.matdes.2018.05.059
    [13] MUELLER J, SHEA K. Stepwise graded struts for maximizing energy absorption in lattices [J]. Extreme Mechanics Letters, 2018, 25: 7–15. doi: 10.1016/j.eml.2018.10.006
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  6289
  • HTML全文浏览量:  2755
  • PDF下载量:  58
出版历程
  • 收稿日期:  2020-06-28
  • 修回日期:  2020-07-22

目录

    /

    返回文章
    返回