贴片晶振在冲击环境下的损伤边界

罗凯文 LI Q. M.

罗凯文, LI Q. M.. 贴片晶振在冲击环境下的损伤边界[J]. 高压物理学报, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572
引用本文: 罗凯文, LI Q. M.. 贴片晶振在冲击环境下的损伤边界[J]. 高压物理学报, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572
LUO Kaiwen, LI Q. M.. Damage Boundary of Crystal Oscillator under Shock Environment[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572
Citation: LUO Kaiwen, LI Q. M.. Damage Boundary of Crystal Oscillator under Shock Environment[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 015301. doi: 10.11858/gywlxb.20200572

贴片晶振在冲击环境下的损伤边界

doi: 10.11858/gywlxb.20200572
详细信息
    作者简介:

    罗凯文(1994-),男,硕士研究生,主要从事冲击环境研究. E-mail:luokw67@gmail.com

    通讯作者:

    Li Q.M.(1962-),男,博士,教授,博士生导师,主要从事冲击动力学研究. E-mail:Qingming.li@manchester.ac.uk

  • 中图分类号: O347; TB123

Damage Boundary of Crystal Oscillator under Shock Environment

  • 摘要: 贴片式石英晶体振荡器广泛应用于各类电子和通信设备系统中。针对晶振在冲击环境中容易出现结构破坏而导致系统工作异常的问题,通过分析单自由度系统在不同频率冲击载荷作用下的响应特点,建立了结构的应力响应水平与相关冲击响应谱谱值之间的联系,获得了较已有结论更合理的损伤边界形式。根据典型晶振结构易损组件的力学特性建立对应的简化分析模型,得到了贴片晶振在大频率范围内的结构损伤边界。利用有限元仿真软件,对晶振结构在0.5~30 kHz频率范围内冲击载荷下的响应进行仿真分析,验证了该损伤边界的有效性。这也为以贴片晶振为代表的微小元器件在冲击环境下的可靠性研究提供了一种可行的方法。

     

  • 图  贴片晶振的结构

    Figure  1.  Structure of surface mounted device (SMD) crystal oscillator

    图  晶振在冲击下的断裂部位[4]

    Figure  2.  Fracture position of crystal under impact loading[4]

    图  单自由度质量弹簧系统

    Figure  3.  Single-degree-of-freedom system with mass, stiffness system

    图  相对时间尺度与结构冲击响应的分析方法[18]

    Figure  4.  Relative time scale and the analysis method of structural impact response[18]

    图  晶振结构的有限元模型

    Figure  5.  Finite element model of SMD crystal oscillator

    图  晶片组件第1、3、5阶模态距固支边相同距离的点的平均横向位移相对幅值

    Figure  6.  Average relative deflection of the points at the same distance from the fixed edge of the 1st, 3rd, and 5th order modes of the structure

    图  悬臂梁结构受均布载荷作用

    Figure  7.  Cantilever beam structure under uniform load

    图  在晶振焊盘处施加加速度载荷

    Figure  8.  Applying acceleration load to the welding pads

    图  正弦衰减信号

    Figure  9.  Attenuated sinusoidal signal

    图  10  损伤边界与临界正弦衰减信号的冲击谱

    Figure  10.  Damage boundary and SRS of critical attenuated sinusoidal signal

    图  11  晶振受横向冲击时的应力云图

    Figure  11.  Stress contour of crystal oscillator under lateral shock

    图  12  实测冲击信号

    Figure  12.  Measured shock signal

    图  13  损伤边界临界冲击信号的冲击谱

    Figure  13.  Damage boundary and shock response spectrum of critical shock signal

    表  1  模型尺寸

    Table  1.   Geometrical dimensions of the model

    Structure moduleLength/mmWidth/mmHeight/mmStructure moduleLength/mmWidth/mmHeight/mm
    Crystal plate5.03.20.08Pad1.41.10.05
    Conductive adhesive0.40.40.20Lid6.04.00.10
    Electrode2.01.50.02Circuit block 14.02.20.30
    Packaging base7.05.01.80Circuit block 20.31.20.50
    下载: 导出CSV

    表  2  有限元模型中的材料参数

    Table  2.   Material parameters in finite element model

    ModuleMaterialElastic modulus/GPaDensity/(g·cm−3)Poisson’s ratioTensile strength/MPa
    Crystal plateQuartz[Cpq][21]2.6540
    Integrated circuitSilicon13.02.330.28
    ElectrodeSilver73.210.530.38
    Packaging basePhenolic resin2.0–2.91.25–1.300.35–0.38
    LidPackfong100.88.700.37
    Conductive adhesiveEpoxy polymer2.92.520.34
    PadSnAgCu solder41.68.740.40
    下载: 导出CSV

    表  3  晶片的各阶模态频率

    Table  3.   Modal frequencies of the crystal plate

    Modal
    order
    Natural
    frequency/kHz
    Effective mass in
    normal direction/kg
    PModal
    order
    Natural
    frequency/kHz
    Effective mass in
    normal direction/kg
    P
    12.5853.26288 × 10−61.00000973.4381.13510 × 10−80.00348
    212.4797.97027 × 10−90.002441089.0444.91526 × 10−80.01506
    316.8988.92118 × 10−70.2734111106.3863.74328 × 10−90.00115
    436.7811.54332 × 10−80.0047312114.3361.38521 × 10−100.00004
    542.5463.24468 × 10−70.0994413120.2112.83863 × 10−90.00087
    656.5974.45802 × 10−110.0000114127.1392.82303 × 10−80.00865
    761.5525.64709 × 10−90.0017315145.9522.23781 × 10−100.00007
    869.9821.17592 × 10−70.03604
    下载: 导出CSV
  • [1] VIG J R, AUDOIN C, CUTLER L S, et al. Acceleration, vibration and shock effects-IEEE standards project P1193 [C]//Proceedings of 1992 IEEE Frequency Control Symposium. Hershey: IEEE, 1992: 763−781. DOI: 10.1109/FREQ.1992.269960.
    [2] FILLER R L. The acceleration sensitivity of quartz crystaloscillators: a review [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1988, 35(3): 297–305. doi: 10.1109/58.20450
    [3] 冷国俊, 陈睿, 何著, 等. 晶振加速度敏感性矢量计算及耦合机理研究 [J]. 应用数学和力学, 2014, 35(Suppl 1): 65–69.

    LENG G J, CHEN R, HE Z, et al. Research on crystal acceleration sensitivity vectorcalculation and coupling mechanism [J]. Applied Mathematics and Mechanics, 2014, 35(Suppl 1): 65–69.
    [4] 邱士起, 牛少华, 高世桥. 冲击载荷下石英晶体振荡器失效机理分析 [J]. 兵工学报, 2016, 37(Suppl 2): 96–100.

    QIU S Q, NIU S H, GAO S Q. Failure mechanism analysis of quartz crystal oscillators under impact load [J]. Acta Armamentarii, 2016, 37(Suppl 2): 96–100.
    [5] 李乐, 祖静, 徐鹏. EXO3晶振与KSS晶振在高过载下的失效特性分析 [J]. 中国测试技术, 2007, 33(3): 88–90. doi: 10.3969/j.issn.1674-5124.2007.03.029

    LI L, ZU J, XU P. Failure mechanism of crystal oscillator EXO3 and KSS under high shock [J]. China Measurement Technology, 2007, 33(3): 88–90. doi: 10.3969/j.issn.1674-5124.2007.03.029
    [6] MOENINGC J. Pyrotechnic shock flight failures [C]//Proceedings of the 31st Annual Technical Meeting of the Institute of Environmental Sciences. Las Vegas, 1985: 4−5.
    [7] 赵小龙, 马铁华, 范锦彪. 弹载常用芯片在高g值冲击下的失效分析 [J]. 仪器仪表学报, 2013, 34(10): 2358–2364.

    ZHAO X L, MA T H, FAN J B. Failure analysis of common missile-borne chip in high g shock [J]. Chinese Journal of Scientific Instrument, 2013, 34(10): 2358–2364.
    [8] 鲍爱达, 陈员娥, 李长龙, 等. 弹载加速度记录仪在冲击环境下的失效研究 [J]. 振动与冲击, 2013, 32(13): 182–186, 196. doi: 10.3969/j.issn.1000-3835.2013.13.034

    BAO A D, CHEN Y E, LI C L, et al. Failure study on a missile accelerometer recorder under shock environment [J]. Journal of Vibration and Shock, 2013, 32(13): 182–186, 196. doi: 10.3969/j.issn.1000-3835.2013.13.034
    [9] 杨磊, 秦玉浩, 蒋韦, 等. 星载高稳晶振的减振设计 [J]. 空间电子技术, 2016, 13(5): 9–13. doi: 10.3969/j.issn.1674-7135.2016.05.003

    YANG L, QIN Y H, JIANG W, et al. Vibration attenuation design of OCXO for aerospace applications [J]. Space Electronic Technology, 2016, 13(5): 9–13. doi: 10.3969/j.issn.1674-7135.2016.05.003
    [10] 徐鹏. 高g值加速度作用下晶振的失效机理分析 [J]. 中北大学学报(自然科学版), 2010, 31(4): 424–428. doi: 10.3969/j.issn.1673-3193.2010.04.022

    XU P. Failure mechanical analysis of crystal oscillator under high g acceleration [J]. Journal of North University of China (Natural Science Edition), 2010, 31(4): 424–428. doi: 10.3969/j.issn.1673-3193.2010.04.022
    [11] 刘晨, 张欢, 朱剑涛, 等. 航天器电子产品抗火工冲击环境设计方法 [J]. 航天器工程, 2018, 27(3): 45–51. doi: 10.3969/j.issn.1673-8748.2018.03.007

    LIU C, ZHANG H, ZHU J T, et al. Design to resist pyroshock environment for space electronic unit [J]. Spacecraft Engineering, 2018, 27(3): 45–51. doi: 10.3969/j.issn.1673-8748.2018.03.007
    [12] 马爱军, 石蒙, 刘洪英, 等. 应用谐振装置在电动振动台上实现高量级冲击响应谱的仿真研究 [J]. 航天器环境工程, 2011, 28(5): 427–430. doi: 10.3969/j.issn.1673-1379.2011.05.004

    MA A J, SHI M, LIU H Y, et al. Simulations of high level shock response spectrum test using resonant fixtureon an electrodynamics shaker [J]. Spacecraft Environment Engineering, 2011, 28(5): 427–430. doi: 10.3969/j.issn.1673-1379.2011.05.004
    [13] GABERSON H A. Pseudo velocity shock spectrum rules for analysis of mechanical shock [C]//Proceedings of IMAC XXV. Orlando: Society of Experimental Mechanics, 2007: 367−402.
    [14] GABERSON H A. Half sine shock tests to assure machinery survival in explosive environments [EB/OL]. (2013–04–15) [2020–04–26]. http://www.vibrationdata.com/tutorials2/HSS_test.pdf.
    [15] IRVINE T. Shock severity limits for electronic component [EB/OL]. (2014–06–27)[2020–04–26]. http://vibrationdata.com/tutorials2/shock_severity_electronics.pdf.
    [16] LI B W, LI Q M. Damage boundary of structural components under shock environment [J]. International Journal of Impact Engineering, 2018, 118: 67–77. doi: 10.1016/j.ijimpeng.2018.04.002
    [17] ALEXANDER J E. Shock response spectrum: a primer [J]. Sound & Vibration, 2015, 43(6): 6–14.
    [18] SRIKAR V T, SENTURIA S D. The reliability of microelectromechanical systems (MEMS) in shock environments [J]. Journal of Microelectromechanical Systems, 2002, 11(3): 206–214. doi: 10.1109/JMEMS.2002.1007399
    [19] 王礼立. 应力波基础[M]. 2版. 北京: 国防工业出版社, 2005: 12–20.

    WANG L L. Foundation of stress waves [M]. 2nd ed. Beijing: National Defense Industry Press, 2005: 12–20.
    [20] GABERSON H A. Shock severity estimation [J]. Sound & Vibration, 2012, 46(1): 12–20.
    [21] 李迪. 石英晶体圆板谐振器的有限元分析及实验研究 [D]. 南京: 南京航空航天大学, 2017: 14–15.

    LI D. The finite element analysis and experiment research of circular quartz crystal resonator [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 14−15.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  5993
  • HTML全文浏览量:  2734
  • PDF下载量:  52
出版历程
  • 收稿日期:  2020-06-19
  • 修回日期:  2020-07-07
  • 刊出日期:  2020-10-25

目录

    /

    返回文章
    返回