螺旋拉胀纱线动态拉伸行为的数值模拟

戴金滔 王文强

戴金滔, 王文强. 螺旋拉胀纱线动态拉伸行为的数值模拟[J]. 高压物理学报, 2021, 35(2): 024204. doi: 10.11858/gywlxb.20200570
引用本文: 戴金滔, 王文强. 螺旋拉胀纱线动态拉伸行为的数值模拟[J]. 高压物理学报, 2021, 35(2): 024204. doi: 10.11858/gywlxb.20200570
DAI Jintao, WANG Wenqiang. A Numerical Study on the Dynamic Tensile Behavior of Helical Auxetic Yarns[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024204. doi: 10.11858/gywlxb.20200570
Citation: DAI Jintao, WANG Wenqiang. A Numerical Study on the Dynamic Tensile Behavior of Helical Auxetic Yarns[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024204. doi: 10.11858/gywlxb.20200570

螺旋拉胀纱线动态拉伸行为的数值模拟

doi: 10.11858/gywlxb.20200570
基金项目: 中国工程物理研究院规划发展课题(TCGH0111)
详细信息
    作者简介:

    戴金滔(1995-),男,硕士研究生,主要从事材料与结构动态响应的数值模拟研究.E-mail:913245629@qq.com

    通讯作者:

    王文强(1968-),男,博士,研究员,主要从事冲击波物理与爆炸力学相关问题研究.E-mail:wwq_mech@163.com

  • 中图分类号: O347.1

A Numerical Study on the Dynamic Tensile Behavior of Helical Auxetic Yarns

  • 摘要: 螺旋拉胀纱线是由高模量纱线螺旋式包缠低模量纱线所形成的复合纱线,在纵向拉伸下呈现沿横向膨胀的负泊松比现象。为揭示其抗冲击机理,基于有限元模拟,开展了螺旋拉胀纱线的动态拉伸行为研究,发现在螺旋拉胀纱线中存在着分别由包缠纱和芯纱所主导的一快和一慢两个应力波,且在两个波阵面之间横向变形和Mises应力均随时间和空间周期性变化。给出了双波波速随加载速度和摩擦系数的变化规律,并结合等效模量的概念进行了定性讨论。模拟结果还显示,螺旋拉胀纱线中内能与动能基本相等,且摩擦对能量吸收有重要贡献。

     

  • 图  准静态模拟呈现的拉胀效应:模型在拉伸度为0、10.5%、35.0%时的构型

    Figure  1.  Auxetic effect revealed from the quasistatic simulation: configurations of the model at elongations of 0, 10.5% and 35.0%

    图  0.1 ms时某典型算例的对数应变云图

    Figure  2.  Logarithmic strain contour of a typical simulation at 0.1 ms

    图  节点P的Mises应力随时间的变化曲线

    Figure  3.  Time history of the Mises stress at nodal point P

    图  不同加载速度下的快波(a)和慢波(b)波速

    Figure  4.  Speeds of fast wave (a) and slow wave (b) at different loading velocities

    图  不同摩擦系数下的快波(a)和慢波(b)波速

    Figure  5.  Speeds of fast wave (a) and slow wave (b) at different friction coefficients

    图  典型算例中的内能、动能及摩擦耗能的时间历史曲线

    Figure  6.  Time histories of internal energy, kinetic energy and friction dissipation for a typical simulation

    表  1  计算模型的材料和几何参数

    Table  1.   Material and geometry parameters of the computational model

    YarnsE/GPa$\;\mu $Diameter/mmDensity/(kg·m−3)Mesh size/mmWrap angle/(°)
    Wrap yarn143.00.30.1814400.0920
    Core yarn1.60.40.6415000.10
    下载: 导出CSV
  • [1] EVANS K E, ALDERSON A. Auxetic materials: functional materials and structures from lateral thinking! [J]. Advanced Materials, 2000, 12(9): 617–628. doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3
    [2] LAKES R S. Negative-poisson’s-ratio materials: auxetic solids [J]. Annual Review of Materials Research, 2017, 47: 63–81. doi: 10.1146/annurev-matsci-070616-124118
    [3] GREAVES G N, GREER A L, LAKES R S, et al. Poisson’s ratio and modern materials [J]. Nature Materials, 2011, 10(11): 823–837. doi: 10.1038/nmat3134
    [4] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research–materials with negative Poisson’s ratio: a review [J]. Advanced Engineering Materials, 2016, 18(11): 1847–1870. doi: 10.1002/adem.201600053
    [5] IMBALZANO G, TRAN P, NGO T D, et al. A numerical study of auxetic composite panels under blast loadings [J]. Composite Structures, 2016, 135: 339–352. doi: 10.1016/j.compstruct.2015.09.038
    [6] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. doi: 10.1016/j.compstruct.2017.03.018
    [7] YANG S, CHALIVENDRA V B, KIM Y K. Fracture and impact characterization of novel auxetic Kevlar/Epoxy laminated composites [J]. Composite Structures, 2017, 168: 120–129. doi: 10.1016/j.compstruct.2017.02.034
    [8] NOVAK N, VESENJAK M, TANAKA S, et al. Compressive behaviour of chiral auxetic cellular structures at different strain rates [J]. International Journal of Impact Engineering, 2020, 141: 103566. doi: 10.1016/j.ijimpeng.2020.103566
    [9] ZHAI X D, GAO J L, LIAO H J, et al. Mechanical behaviors of a polyurethane foam at quasi-static, intermediate and high strain rates [J]. International Journal of Impact Engineering, 2019, 129: 112–118. doi: 10.1016/j.ijimpeng.2019.03.002
    [10] LAI C Q, DARAIO C. Highly porous microlattices as ultrathin and efficient impact absorbers [J]. International Journal of Impact Engineering, 2018, 120: 138–149. doi: 10.1016/j.ijimpeng.2018.05.014
    [11] QI C, REMENNIKOV A, PEI L Z, et al. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations [J]. Composite Structures, 2017, 180: 161–178. doi: 10.1016/j.compstruct.2017.08.020
    [12] HOOK P B. Auxetic mechanisms, structures and materials [D]. Exeter, UK: University of Exeter, 2003.
    [13] MILLER W, HOOK P B, SMITH C W, et al. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite [J]. Composites Science and Technology, 2009, 69(5): 651–655. doi: 10.1016/j.compscitech.2008.12.016
    [14] WRIGHT J R, SLOAN M R, EVANS K E. Tensile properties of helical auxetic structures: a numerical study [J]. Journal of Applied Physics, 2010, 108(4): 044905. doi: 10.1063/1.3465378
    [15] SLOAN M R, WRIGHT J R, EVANS K E. The helical auxetic yarn–a novel structure for composites and textiles: geometry, manufacture and mechanical properties [J]. Mechanics of Materials, 2011, 43(9): 476–486. doi: 10.1016/j.mechmat.2011.05.003
    [16] MA Q, PEE L D. Development of spiral auxetic structures [J]. Composite Structures, 2018, 192: 310–316. doi: 10.1016/j.compstruct.2018.02.091
    [17] MILLER W, REN Z, SMITH C W, et al. A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement [J]. Composites Science and Technology, 2012, 72(7): 761–766. doi: 10.1016/j.compscitech.2012.01.025
    [18] MCAFEE J, FAISAL N H. Parametric sensitivity analysis to maximise auxetic effect of polymeric fibre based helical yarn [J]. Composite Structures, 2017, 162: 1–12. doi: 10.1016/j.compstruct.2016.11.077
    [19] HAMBLING D. Stronger, lighter, better body armor [EB/OL]. (2013-04-29)[2020-06-18]. https://aviationweek.com/awin/stronger-lighter-better-body-armor.
    [20] DIAZ J. Zetix blast-proof fabric resists multiple car bombs, makes our heads explode [EB/OL]. (2012-06-07)[2020-06-18]. https://gizmodo.com/zetix-blast-proof-fabric-resists-multiple-car-bombs-ma-330343.
    [21] ZHANG G H, GHITA O R, EVANS K E. Dynamic thermo-mechanical and impact properties of helical auxetic yarns [J]. Composites Part B, 2016, 99: 494–505. doi: 10.1016/j.compositesb.2016.05.059
    [22] STOKES V K. On the dynamic radial expansion of helical springs due to longitudinal impact [J]. Journal of Sound and Vibration, 1974, 35(1): 77–99. doi: 10.1016/0022-460X(74)90039-X
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  6187
  • HTML全文浏览量:  2194
  • PDF下载量:  40
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-08-25

目录

    /

    返回文章
    返回