A Numerical Study on the Dynamic Tensile Behavior of Helical Auxetic Yarns
-
摘要: 螺旋拉胀纱线是由高模量纱线螺旋式包缠低模量纱线所形成的复合纱线,在纵向拉伸下呈现沿横向膨胀的负泊松比现象。为揭示其抗冲击机理,基于有限元模拟,开展了螺旋拉胀纱线的动态拉伸行为研究,发现在螺旋拉胀纱线中存在着分别由包缠纱和芯纱所主导的一快和一慢两个应力波,且在两个波阵面之间横向变形和Mises应力均随时间和空间周期性变化。给出了双波波速随加载速度和摩擦系数的变化规律,并结合等效模量的概念进行了定性讨论。模拟结果还显示,螺旋拉胀纱线中内能与动能基本相等,且摩擦对能量吸收有重要贡献。Abstract: A helical auxetic yarn (HAY) is a composite yarn which is formed by helically wrapping a high modulus yarn on a low modulus yarn, and it exhibits the so-called negative Poisson’s ratio phenomenon of transverse expansion upon longitudinal stretching. To reveal the mechanisms of HAY’s shock resistance, a study on its dynamic tensile behavior was carried out based on finite element simulation. It was found that there are two stress waves in a shock loaded HAY, one is a fast wave and another is a slow wave which are dominated respectively by the wrap yarn and the core yarn, and between the two wavefronts, both the transverse deformation and the Mises stress change periodically with time and space. The relationships between the wave speeds and loading velocity and friction coefficient are presented and qualitatively discussed based on the concept of effective modulus. The simulation results also show that the internal energy is almost equal to the kinetic energy, and friction has a significant contribution to energy absorption.
-
表 1 计算模型的材料和几何参数
Table 1. Material and geometry parameters of the computational model
Yarns E/GPa $\;\mu $ Diameter/mm Density/(kg·m−3) Mesh size/mm Wrap angle/(°) Wrap yarn 143.0 0.3 0.18 1440 0.09 20 Core yarn 1.6 0.4 0.64 1500 0.10 -
[1] EVANS K E, ALDERSON A. Auxetic materials: functional materials and structures from lateral thinking! [J]. Advanced Materials, 2000, 12(9): 617–628. doi: 10.1002/(SICI)1521-4095(200005)12:9<617::AID-ADMA617>3.0.CO;2-3 [2] LAKES R S. Negative-poisson’s-ratio materials: auxetic solids [J]. Annual Review of Materials Research, 2017, 47: 63–81. doi: 10.1146/annurev-matsci-070616-124118 [3] GREAVES G N, GREER A L, LAKES R S, et al. Poisson’s ratio and modern materials [J]. Nature Materials, 2011, 10(11): 823–837. doi: 10.1038/nmat3134 [4] SAXENA K K, DAS R, CALIUS E P. Three decades of auxetics research–materials with negative Poisson’s ratio: a review [J]. Advanced Engineering Materials, 2016, 18(11): 1847–1870. doi: 10.1002/adem.201600053 [5] IMBALZANO G, TRAN P, NGO T D, et al. A numerical study of auxetic composite panels under blast loadings [J]. Composite Structures, 2016, 135: 339–352. doi: 10.1016/j.compstruct.2015.09.038 [6] IMBALZANO G, LINFORTH S, NGO T D, et al. Blast resistance of auxetic and honeycomb sandwich panels: comparisons and parametric designs [J]. Composite Structures, 2018, 183: 242–261. doi: 10.1016/j.compstruct.2017.03.018 [7] YANG S, CHALIVENDRA V B, KIM Y K. Fracture and impact characterization of novel auxetic Kevlar/Epoxy laminated composites [J]. Composite Structures, 2017, 168: 120–129. doi: 10.1016/j.compstruct.2017.02.034 [8] NOVAK N, VESENJAK M, TANAKA S, et al. Compressive behaviour of chiral auxetic cellular structures at different strain rates [J]. International Journal of Impact Engineering, 2020, 141: 103566. doi: 10.1016/j.ijimpeng.2020.103566 [9] ZHAI X D, GAO J L, LIAO H J, et al. Mechanical behaviors of a polyurethane foam at quasi-static, intermediate and high strain rates [J]. International Journal of Impact Engineering, 2019, 129: 112–118. doi: 10.1016/j.ijimpeng.2019.03.002 [10] LAI C Q, DARAIO C. Highly porous microlattices as ultrathin and efficient impact absorbers [J]. International Journal of Impact Engineering, 2018, 120: 138–149. doi: 10.1016/j.ijimpeng.2018.05.014 [11] QI C, REMENNIKOV A, PEI L Z, et al. Impact and close-in blast response of auxetic honeycomb-cored sandwich panels: experimental tests and numerical simulations [J]. Composite Structures, 2017, 180: 161–178. doi: 10.1016/j.compstruct.2017.08.020 [12] HOOK P B. Auxetic mechanisms, structures and materials [D]. Exeter, UK: University of Exeter, 2003. [13] MILLER W, HOOK P B, SMITH C W, et al. The manufacture and characterisation of a novel, low modulus, negative Poisson’s ratio composite [J]. Composites Science and Technology, 2009, 69(5): 651–655. doi: 10.1016/j.compscitech.2008.12.016 [14] WRIGHT J R, SLOAN M R, EVANS K E. Tensile properties of helical auxetic structures: a numerical study [J]. Journal of Applied Physics, 2010, 108(4): 044905. doi: 10.1063/1.3465378 [15] SLOAN M R, WRIGHT J R, EVANS K E. The helical auxetic yarn–a novel structure for composites and textiles: geometry, manufacture and mechanical properties [J]. Mechanics of Materials, 2011, 43(9): 476–486. doi: 10.1016/j.mechmat.2011.05.003 [16] MA Q, PEE L D. Development of spiral auxetic structures [J]. Composite Structures, 2018, 192: 310–316. doi: 10.1016/j.compstruct.2018.02.091 [17] MILLER W, REN Z, SMITH C W, et al. A negative Poisson’s ratio carbon fibre composite using a negative Poisson’s ratio yarn reinforcement [J]. Composites Science and Technology, 2012, 72(7): 761–766. doi: 10.1016/j.compscitech.2012.01.025 [18] MCAFEE J, FAISAL N H. Parametric sensitivity analysis to maximise auxetic effect of polymeric fibre based helical yarn [J]. Composite Structures, 2017, 162: 1–12. doi: 10.1016/j.compstruct.2016.11.077 [19] HAMBLING D. Stronger, lighter, better body armor [EB/OL]. (2013-04-29)[2020-06-18]. https://aviationweek.com/awin/stronger-lighter-better-body-armor. [20] DIAZ J. Zetix blast-proof fabric resists multiple car bombs, makes our heads explode [EB/OL]. (2012-06-07)[2020-06-18]. https://gizmodo.com/zetix-blast-proof-fabric-resists-multiple-car-bombs-ma-330343. [21] ZHANG G H, GHITA O R, EVANS K E. Dynamic thermo-mechanical and impact properties of helical auxetic yarns [J]. Composites Part B, 2016, 99: 494–505. doi: 10.1016/j.compositesb.2016.05.059 [22] STOKES V K. On the dynamic radial expansion of helical springs due to longitudinal impact [J]. Journal of Sound and Vibration, 1974, 35(1): 77–99. doi: 10.1016/0022-460X(74)90039-X