Comparative Experimental Study on Dynamic Mechanical Properties of G50 Steel and G31 Steel
-
摘要: 采用拉伸、冲击、霍普金森杆压缩及所设计的爆轰加载试验方法,对比研究了G50钢与G31钢在准静态、动态及爆轰加载条件下的力学性能。试验结果表明:G50钢和G31钢在准静态、103 s−1应变率下的动态力学性能相近;在爆轰加载条件下,G50钢和G31钢试样发生了近乎相同的破坏形态,说明在超高压及超高应变率条件下两种材料具有相近的屈服强度和抗拉强度。研究结果表明,G31钢与G50钢有相似的力学性能,在侵彻战斗部壳体方面可做进一步的应用尝试。Abstract: The mechanical properties of G50 steel and G31 steel under quasi-static, dynamic and detonation loading conditions are compared by tensile test, impact test, Hopkinson bar test and detonation loading test. The results show that the mechanical performances of G50 steel and G31 steel under static and 103 s−1 strain rate conditions are similar. The G50 steel and G31 steel exhibit similar failure morphology after detonation loading test, indicating that the two materials have similar tensile strength and yield strength under ultra-high pressure and ultra-high strain rate condition. The test results show that G31 steel can apply in the shell of penetrating the warhead.
-
Key words:
- G50 steel /
- G31 steel /
- mechanical properties /
- detonation loading /
- failure morphology
-
表 1 G50钢与G31钢主要化学成分(质量分数)
Table 1. Chemical constituents of G50 steel and G31 steel (Mass fraction)
% Material C Si Mn Ni Cr Mo Nb G50 0.28 1.90 0.61 4.47 1.02 0.60 0.03 G31 0.27 1.30 0.65 1.01 3.32 0.44 0.03 表 2 G50钢与G31钢准静态力学性能
Table 2. Quasi-static mechanical properties of G50 steel and G31 steel
Material Number $\sigma $b/MPa $\sigma $s/MPa A/% Z/% αku/(J·cm−2) G50 1 1734 1398 13.0 50 83 2 1747 1409 11.5 56 88 3 1740 1416 12.0 53 78 G31 1 1733 1397 12.5 49 79 2 1752 1411 12.3 49 93 3 1738 1399 11.8 51 84 表 3 G50钢和G31钢在不同应变率条件下的应力峰值
Table 3. Peak stresses of G50 steel and G31 steel in different strain rates
Material 1100 s−1 2050 s−1 3100 s−1 Peak stress/MPa Strain Peak stress/MPa Strain Peak stress/MPa Strain G50 2287 0.0690 2344 0.1293 2392 0.2852 G31 2294 0.0652 2338 0.1340 2367 0.2800 表 4 G50圆管试样参数
Table 4. Parameters of G50 tube specimen
$\;\rho $/(g·cm−3) G/GPa E/GPa $\;\mu $ AJC/GPa BJC/GPa nJC CJC MJC 7.8 77 210 0.3 1.39 1.226 0.356 0.005 1.12 表 5 TNT炸药参数
Table 5. Parameters of TNT
$\;\rho $/(g·cm−3) D/(m·s−1) pCJ/GPa A/GPa B/GPa R1 R2 $\omega $ E0 1.6 6930 21 373.8 3.747 4.15 0.9 0.35 0.06 表 6 爆轰加载试验结果统计
Table 6. Statistical results of detonation loading test
Material Crack number Crack Maximum width/mm Crack length/mm Maximum diameter/mm Deformation rate/% G50 1 1.5 41 57.6 15.2 G31 1 1.5 36 57.0 14.0 -
[1] 李杰, 李志, 颜鸣皋. 高合金超高强度钢的发展 [J]. 材料工程, 2007(4): 61–65. doi: 10.3969/j.issn.1001-4381.2007.04.016LI J, LI Z, YAN M G. Development of high-alloy ultra-high strength steel [J]. Material Engineering, 2007(4): 61–65. doi: 10.3969/j.issn.1001-4381.2007.04.016 [2] 史俊飞. 无钴超高强钢G50两种工艺路线的探讨 [J]. 特钢技术, 2006,11(2): 45–49.SHI J F. Discussion on two production process of super high strength cobalt free steel G50 [J]. Special Steel Technology, 2006,11(2): 45–49. [3] 秦玉荣, 苏杰, 杨卓越, 等. 三种超高强度钢的动态力学性能 [J]. 金属热处理, 2014, 39(12): 85–86.QIN Y R, SU J, YANG Z Y, et al. Dynamic mechanical properties of three kinds of ultrahigh strength steel [J]. Heat Treatment of Metals, 2014, 39(12): 85–86. [4] 王可慧, 张颖, 段建, 等. G50钢的力学性能实验研究 [J]. 兵工学报, 2009, 30(Suppl 2): 247–250.WANG K H, ZHANG Y, DUAN J, et al. Experimental research on the mechanical properties of G50 alloy steel [J]. Acta Armamentarii, 2009, 30(Suppl 2): 247–250. [5] 范长刚, 董瀚, 时捷, 等. 镍含量对2 200 MPa级超高强度钢力学性能的影响 [J]. 金属热处理, 2007, 32(2): 16–19. doi: 10.3969/j.issn.0254-6051.2007.02.004FAN C G, DONG H, SHI J, et al. Effect of nickel content on mechanical properties of 2 200 MPa grade ultra-high strength steels [J]. Heat Treatment of Metals, 2007, 32(2): 16–19. doi: 10.3969/j.issn.0254-6051.2007.02.004 [6] 桂毓林, 王彦平, 刘仓理, 等. 无钴合金钢的冲击响应实验研究 [J]. 高压物理学报, 2005, 19(2): 127–131. doi: 10.3969/j.issn.1000-5773.2005.02.005GUI Y L, WANG Y P, LIU C L, et al. An experimental study on shock response of no Co steel [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 127–131. doi: 10.3969/j.issn.1000-5773.2005.02.005 [7] LI Q, ZMUDZKI P, ALAMEERI S, et al. Morphology of adiabatic shear bands in cylindrical specimens of AISI4340 steel impacted by Hopkinson pressure bar [J]. Matrials Science and Technology, 2004, 20(5): 676–678. doi: 10.1179/026708304225012099 [8] ROUMINA R, EMBURY J D, BOUAZIZ O, et al. Mechanical behavior of acompositionally graded 300 M steel [J]. Materials Science and Engineering A, 2013, 578: 140–149. doi: 10.1016/j.msea.2013.04.006 [9] 王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-celocity projectiles penetrating in to reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010 [10] 周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101.ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experimental studies on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. [11] BASSIM M N. Study of the formation of adiabatic shear band in steels [J]. Journal of Materials Processing Technology, 2001, 119(1/2/3): 234–236.