G50钢与G31钢动态力学性能的对比试验研究

孔庆强 沈飞 邢逸凡 吕永柱 曹玉武

孔庆强, 沈飞, 邢逸凡, 吕永柱, 曹玉武. G50钢与G31钢动态力学性能的对比试验研究[J]. 高压物理学报, 2021, 35(1): 014103. doi: 10.11858/gywlxb.20200569
引用本文: 孔庆强, 沈飞, 邢逸凡, 吕永柱, 曹玉武. G50钢与G31钢动态力学性能的对比试验研究[J]. 高压物理学报, 2021, 35(1): 014103. doi: 10.11858/gywlxb.20200569
KONG Qingqiang, SHEN Fei, XING Yifan, LÜ Yongzhu, CAO Yuwu. Comparative Experimental Study on Dynamic Mechanical Properties of G50 Steel and G31 Steel[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014103. doi: 10.11858/gywlxb.20200569
Citation: KONG Qingqiang, SHEN Fei, XING Yifan, LÜ Yongzhu, CAO Yuwu. Comparative Experimental Study on Dynamic Mechanical Properties of G50 Steel and G31 Steel[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014103. doi: 10.11858/gywlxb.20200569

G50钢与G31钢动态力学性能的对比试验研究

doi: 10.11858/gywlxb.20200569
详细信息
    作者简介:

    孔庆强(1983-),男,硕士研究生,工程师,主要从事战斗部结构设计及加工工艺研究. E-mail:colinkqq@163.com

    通讯作者:

    曹玉武(1985-),男,硕士研究生,高级工程师,主要从事战斗部总体设计研究. E-mail:33222800@qq.com

  • 中图分类号: O347

Comparative Experimental Study on Dynamic Mechanical Properties of G50 Steel and G31 Steel

  • 摘要: 采用拉伸、冲击、霍普金森杆压缩及所设计的爆轰加载试验方法,对比研究了G50钢与G31钢在准静态、动态及爆轰加载条件下的力学性能。试验结果表明:G50钢和G31钢在准静态、103 s−1应变率下的动态力学性能相近;在爆轰加载条件下,G50钢和G31钢试样发生了近乎相同的破坏形态,说明在超高压及超高应变率条件下两种材料具有相近的屈服强度和抗拉强度。研究结果表明,G31钢与G50钢有相似的力学性能,在侵彻战斗部壳体方面可做进一步的应用尝试。

     

  • 图  G50钢和G31钢在不同应变率条件下的应力-应变曲线

    Figure  1.  Stress-strain curves of G50 steel and G31 steel in different strain rates

    图  爆轰加载试验方案

    Figure  2.  Scheme of the detonation loading test

    图  仿真计算模型

    Figure  3.  Models of the simulated calculation

    图  爆轰后圆管试样应变云图

    Figure  4.  Strain nephograms of tube specimen after detonation loading

    图  最大应变率曲线

    Figure  5.  Curves of maximum strain rate

    图  爆轰加载试验布局示意图

    Figure  6.  Schematic diagram of detonation loading test

    图  爆轰加载试验布局

    Figure  7.  Layout of detonation loading test

    图  试验后的钢圆管试样

    Figure  8.  Steel pipe after test

    图  钢圆管试样断口形貌

    Figure  9.  Fracture morphology of steel pipe

    表  1  G50钢与G31钢主要化学成分(质量分数)

    Table  1.   Chemical constituents of G50 steel and G31 steel (Mass fraction) %

    MaterialCSiMnNiCrMoNb
    G500.281.900.614.471.020.600.03
    G310.271.300.651.013.320.440.03
    下载: 导出CSV

    表  2  G50钢与G31钢准静态力学性能

    Table  2.   Quasi-static mechanical properties of G50 steel and G31 steel

    MaterialNumber$\sigma $b/MPa$\sigma $s/MPaA/%Z/%αku/(J·cm−2)
    G5011734139813.05083
    21747140911.55688
    31740141612.05378
    G3111733139712.54979
    21752141112.34993
    31738139911.85184
    下载: 导出CSV

    表  3  G50钢和G31钢在不同应变率条件下的应力峰值

    Table  3.   Peak stresses of G50 steel and G31 steel in different strain rates

    Material1100 s−12050 s−13100 s−1
    Peak stress/MPaStrainPeak stress/MPaStrainPeak stress/MPaStrain
    G5022870.069023440.129323920.2852
    G3122940.065223380.134023670.2800
    下载: 导出CSV

    表  4  G50圆管试样参数

    Table  4.   Parameters of G50 tube specimen

    $\;\rho $/(g·cm−3)G/GPaE/GPa$\;\mu $AJC/GPaBJC/GPanJCCJCMJC
    7.8772100.31.391.2260.3560.0051.12
    下载: 导出CSV

    表  5  TNT炸药参数

    Table  5.   Parameters of TNT

    $\;\rho $/(g·cm−3)D/(m·s−1)pCJ/GPaA/GPaB/GPaR1R2$\omega $E0
    1.6693021373.83.7474.150.90.350.06
    下载: 导出CSV

    表  6  爆轰加载试验结果统计

    Table  6.   Statistical results of detonation loading test

    MaterialCrack numberCrack Maximum width/mmCrack length/mmMaximum diameter/mmDeformation rate/%
    G5011.54157.615.2
    G3111.53657.014.0
    下载: 导出CSV
  • [1] 李杰, 李志, 颜鸣皋. 高合金超高强度钢的发展 [J]. 材料工程, 2007(4): 61–65. doi: 10.3969/j.issn.1001-4381.2007.04.016

    LI J, LI Z, YAN M G. Development of high-alloy ultra-high strength steel [J]. Material Engineering, 2007(4): 61–65. doi: 10.3969/j.issn.1001-4381.2007.04.016
    [2] 史俊飞. 无钴超高强钢G50两种工艺路线的探讨 [J]. 特钢技术, 2006,11(2): 45–49.

    SHI J F. Discussion on two production process of super high strength cobalt free steel G50 [J]. Special Steel Technology, 2006,11(2): 45–49.
    [3] 秦玉荣, 苏杰, 杨卓越, 等. 三种超高强度钢的动态力学性能 [J]. 金属热处理, 2014, 39(12): 85–86.

    QIN Y R, SU J, YANG Z Y, et al. Dynamic mechanical properties of three kinds of ultrahigh strength steel [J]. Heat Treatment of Metals, 2014, 39(12): 85–86.
    [4] 王可慧, 张颖, 段建, 等. G50钢的力学性能实验研究 [J]. 兵工学报, 2009, 30(Suppl 2): 247–250.

    WANG K H, ZHANG Y, DUAN J, et al. Experimental research on the mechanical properties of G50 alloy steel [J]. Acta Armamentarii, 2009, 30(Suppl 2): 247–250.
    [5] 范长刚, 董瀚, 时捷, 等. 镍含量对2 200 MPa级超高强度钢力学性能的影响 [J]. 金属热处理, 2007, 32(2): 16–19. doi: 10.3969/j.issn.0254-6051.2007.02.004

    FAN C G, DONG H, SHI J, et al. Effect of nickel content on mechanical properties of 2 200 MPa grade ultra-high strength steels [J]. Heat Treatment of Metals, 2007, 32(2): 16–19. doi: 10.3969/j.issn.0254-6051.2007.02.004
    [6] 桂毓林, 王彦平, 刘仓理, 等. 无钴合金钢的冲击响应实验研究 [J]. 高压物理学报, 2005, 19(2): 127–131. doi: 10.3969/j.issn.1000-5773.2005.02.005

    GUI Y L, WANG Y P, LIU C L, et al. An experimental study on shock response of no Co steel [J]. Chinese Journal of High Pressure Physics, 2005, 19(2): 127–131. doi: 10.3969/j.issn.1000-5773.2005.02.005
    [7] LI Q, ZMUDZKI P, ALAMEERI S, et al. Morphology of adiabatic shear bands in cylindrical specimens of AISI4340 steel impacted by Hopkinson pressure bar [J]. Matrials Science and Technology, 2004, 20(5): 676–678. doi: 10.1179/026708304225012099
    [8] ROUMINA R, EMBURY J D, BOUAZIZ O, et al. Mechanical behavior of acompositionally graded 300 M steel [J]. Materials Science and Engineering A, 2013, 578: 140–149. doi: 10.1016/j.msea.2013.04.006
    [9] 王可慧, 耿宝刚, 初哲, 等. 弹体高速侵彻钢筋混凝土靶的结构变形及质量损失的实验研究 [J]. 高压物理学报, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010

    WANG K H, GENG B G, CHU Z, et al. Experimental studies on structural response and mass loss of high-celocity projectiles penetrating in to reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 61–68. doi: 10.11858/gywlxb.2014.01.010
    [10] 周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101.

    ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experimental studies on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101.
    [11] BASSIM M N. Study of the formation of adiabatic shear band in steels [J]. Journal of Materials Processing Technology, 2001, 119(1/2/3): 234–236.
  • 加载中
图(9) / 表(6)
计量
  • 文章访问数:  6108
  • HTML全文浏览量:  3156
  • PDF下载量:  46
出版历程
  • 收稿日期:  2020-06-18
  • 修回日期:  2020-07-03

目录

    /

    返回文章
    返回