新型结构炮口制退器的膛口冲击波数值研究与性能分析

余海伟 袁军堂 汪振华 葛苗冉 罗跃

余海伟, 袁军堂, 汪振华, 葛苗冉, 罗跃. 新型结构炮口制退器的膛口冲击波数值研究与性能分析[J]. 高压物理学报, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568
引用本文: 余海伟, 袁军堂, 汪振华, 葛苗冉, 罗跃. 新型结构炮口制退器的膛口冲击波数值研究与性能分析[J]. 高压物理学报, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568
YU Haiwei, YUAN Juntang, WANG Zhenhua, GE Miaoran, LUO Yue. Muzzle Blast Wave Investigation and Performance Analysis of New-Structure Muzzle Brake Based on Numerical Simulation[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568
Citation: YU Haiwei, YUAN Juntang, WANG Zhenhua, GE Miaoran, LUO Yue. Muzzle Blast Wave Investigation and Performance Analysis of New-Structure Muzzle Brake Based on Numerical Simulation[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065102. doi: 10.11858/gywlxb.20200568

新型结构炮口制退器的膛口冲击波数值研究与性能分析

doi: 10.11858/gywlxb.20200568
基金项目: 国防预研联合基金(6141B0104-2)
详细信息
    作者简介:

    余海伟(1990-),男,博士研究生,主要从事流体仿真与轻量化研究. E-mail:heoiwee@foxmail.com

    通讯作者:

    袁军堂(1962-),男,博士,教授,主要从事先进加工工艺与装备研究. E-mail:mc106@njust.edu.cn

  • 中图分类号: O347.5; TJ303.2

Muzzle Blast Wave Investigation and Performance Analysis of New-Structure Muzzle Brake Based on Numerical Simulation

  • 摘要: 面向炮口制退器综合性能设计需求,基于增材制造技术优势,提出了一种叠加冲击式内壁与反作用式外孔特征的新型小口径轻金属炮口制退器方案。基于三维无黏Euler方程,建立了后效期火药气体排空过程的有限元仿真模型,通过膛口流场仿真与流固耦合分析,研究了膛口流场发展、膛口冲击波与超压分布特征、制退器效率与其强度性能。结果表明:相比于传统结构,采用同种轻质钛合金材料的新型制退器具有较高的制退效率,对于机载平台具有较优的膛口超压分布特征和低冲击波危害效应,并且结构强度满足使用要求。

     

  • 图  新型结构炮口制退器

    Figure  1.  New-structure muzzle brake

    图  冲击式炮口制退器

    Figure  2.  Impulsive type muzzle brake

    图  轴向截面膛口压力云图

    Figure  3.  Pressure nephogram at axial plane

    图  径向截面膛口压力云图

    Figure  4.  Pressure nephogramat at radial cross section

    图  膛口流场速度矢量图

    Figure  5.  Velocity vector diagram of muzzle flow field

    图  不同时刻炮轴中心线压力分布曲线

    Figure  6.  Pressure distributions along central axis of gun at different moments

    图  不同时刻侧孔径向轴线压力分布曲线

    Figure  7.  Pressure distributions along radial axis of side holes at different moments

    图  膛口流场超压监测点阵

    Figure  8.  Overpressure monitoring points of muzzle flow filed

    图  膛口超压峰值分布对比

    Figure  9.  Comparison of overpressure peak distribution

    图  10  制退器腔内压力监测点

    Figure  10.  Monitoring points inside muzzle brake

    图  11  腔内各点压力随时间变化

    Figure  11.  Variation of overpressure inside muzzle brake with time

    图  12  后效期初期制退器受力曲线

    Figure  12.  Curve of muzzle brake force in the early gas ejection period

    图  13  膛底、制退器及总受力曲线

    Figure  13.  Curves of chamber bottom force, muzzle brake force and total thrust

    图  14  制退器结构的等效应力随时间变化曲线

    Figure  14.  Variation of equivalent stress with time of muzzle brake

    图  15  制退器结构的变形随时间变化曲线

    Figure  15.  Variation of deformation with time of muzzle brake

    图  16  0.25 ms时制退器结构的等效应力云图

    Figure  16.  Equivalent stress distribution of the muzzle brake at 0.25 ms

    图  17  1.10 ms时制退器结构的变形云图

    Figure  17.  Deformation distribution of the muzzle brake at 1.10 ms

    表  1  新型炮口制退器结构参数

    Table  1.   Structural parameters of new-structure muzzle brake

    StructureBackward angle/(°)Area/mm2
    Inner side hole 15392.96
    Inner side hole 210470.34
    Inner side hole 310392.96
    Outer side hole078.50
    Front hole146.54
    下载: 导出CSV

    表  2  3D打印钛合金材料参数

    Table  2.   Material parameters of titanium alloy

    MaterialDensity/(g·cm−3)Young’s modulus/GPaYield strength/MPaTensile strength/MPaPoisson’s ratio
    TC44.4311894410580.3
    下载: 导出CSV

    表  3  不同制退器的超压峰值监测结果

    Table  3.   Overpressure peak values of different muzzle brakes

    Monitor pointOverpressure peak/kPaΔnew/kPaΔimpact/kPa
    Smooth muzzleNew-structure muzzle brakeImpact muzzle brake
    P01117.84362.54200.83244.7082.99
    P0246.3165.4653.2019.156.89
    P1183.8079.0344.58−4.76−39.21
    P1228.0723.6119.56−4.46−8.51
    P2148.8429.2830.90−19.56−17.93
    P2219.7611.4515.40−8.31−4.36
    P3122.2918.8550.87−3.4528.57
    P3210.546.9915.30−3.554.76
    P4128.2726.4541.75−1.8213.48
    P4211.559.549.73−2.01−1.82
    P5134.7544.6840.099.935.34
    P5215.7114.7913.58−0.91−2.13
    下载: 导出CSV

    表  4  制退器效率对比

    Table  4.   Comparison of efficiency for different muzzle brakes

    StructureM/kgI/(N·s)v/(m·s−1)vmax/(m·s−1)E/J$\eta $/%
    Smooth muzzle7.09−123.68−47.00−64.4514719.0
    New-structure muzzle brake8.37−29.40−40.23−43.748003.245.62
    Impact muzzle brake8.10−26.15−41.47−44.708091.345.03
    下载: 导出CSV
  • [1] 张相炎, 郑建国, 袁人枢. 火炮设计理论[M]. 北京: 北京理工大学出版社, 2014: 153–157.

    ZHANG X Y, ZHENG J G, YUAN R S. Theory of artillery gun design [M]. Beijing: Beijing Institute of Technology Press, 2014: 153–157.
    [2] 刘凯, 赵俊利, 郭利强, 等. 钛合金在炮口制退器上的应用 [J]. 兵工自动化, 2016, 35(6): 94–96. doi: 10.7690/bgzdh.2016.06.022

    LIU K, ZHAO J L, GUO L Q, et al. Application of titanium alloy in muzzle brake [J]. Ordnance Industry Automation, 2016, 35(6): 94–96. doi: 10.7690/bgzdh.2016.06.022
    [3] 吴喜富, 郑建国. 基于流固耦合的复合结构炮口制退器强度分析 [J]. 兵工自动化, 2016, 35(7): 19–22. doi: 10.7690/bgzdh.2016.07.006

    WU X F, ZHENG J G. Strength analysis of muzzle brake with composite structure by method of fluid solid coupling [J]. Ordnance Industry Automation, 2016, 35(7): 19–22. doi: 10.7690/bgzdh.2016.07.006
    [4] 岳明凯, 刘欣宁. 炮口制退器现状及其发展趋势 [J]. 兵工自动化, 2015, 34(3): 1–6. doi: 10.7690/bgzdh.2015.03.001

    YUE M K, LIU X N. Situation and development of muzzle brake [J]. Ordnance Industry Automation, 2015, 34(3): 1–6. doi: 10.7690/bgzdh.2015.03.001
    [5] 葛苗冉, 袁军堂, 汪振华, 等. 基于正交试验的炮口制退器结构设计与性能分析 [J]. 兵器装备工程学报, 2019, 40(12): 160–164. doi: 10.11809/bqzbgcxb2019.12.032

    GE M R, YUAN J T, WANG Z H, et al. Structural design and performance analysis of muzzle brake based on orthogonal test [J]. Journal of Ordnance Equipment Engineering, 2019, 40(12): 160–164. doi: 10.11809/bqzbgcxb2019.12.032
    [6] 谭添, 戴劲松, 王茂森, 等. 封闭反射膨胀装置流场仿真分析 [J]. 火炮发射与控制学报, 2019, 40(4): 1–5. doi: 10.19323/j.issn.1673-6524.2019.04.001

    TAN T, DAI J S, WANG M S, et al. Flow field simulation of closed reflective inflation device [J]. Journal of Gun Launch & Control, 2019, 40(4): 1–5. doi: 10.19323/j.issn.1673-6524.2019.04.001
    [7] 李萌蘖, 李闯, 李绍宏. TC4合金增材制造的研究现状 [J]. 昆明理工大学学报(自然科学版), 2018, 43(6): 20–27.

    LI M N, LI C, LI S H. Current status of TC4 alloy additive manufacturing [J]. Journal of Kunming University of Science and Technology (Natural Science), 2018, 43(6): 20–27.
    [8] 张焕好, 陈志华, 姜孝海, 等. 高速弹丸穿越不同制退器时的膛口流场波系结构研究 [J]. 兵工学报, 2012, 33(5): 623–629.

    ZHANG H H, CHEN Z H, JIANG X H, et al. Investigation on the blast wave structures of a high-speed projectile flying through different muzzle brakes [J]. Acta Armamentarii, 2012, 33(5): 623–629.
    [9] ZHANG H H, CHEN Z H, JIANG X H, et al. Investigations on the exterior flow field and the efficiency of the muzzle brake [J]. Journal of Mechanical Science and Technology, 2013, 27(1): 95–101. doi: 10.1007/s12206-012-1223-8
    [10] 代淑兰, 许厚谦, 肖忠良. 带制退器的膛口燃烧流场并行数值模拟 [J]. 弹道学报, 2009, 21(4): 84–87.

    DAI S L, XU H Q, XIAO Z L. Numerical simulation of muzzle combustion flow field with brake by parallel computation [J]. Journal of Ballistics, 2009, 21(4): 84–87.
    [11] LEI H X, WANG Z J, ZHAO J L. Stress analysis of muzzle brake by using fluid-solid coupled method [J]. Journal of Engineering Science and Technology Review, 2016, 9(4): 48–55. doi: 10.25103/jestr.094.07
    [12] CHATURVEDI E, DWIVEDI R K. Computer aided design and analysis of a tunable muzzle brake [J]. Defence Technology, 2019, 15(1): 89–94. doi: 10.1016/j.dt.2018.06.011
    [13] 吴彦霖. 基于SLM制备的钛合金三维点阵结构的力学性能研究 [D]. 重庆: 重庆大学, 2016.

    WU Y L. An investigation into the mechanical properties of Ti6Al4V lattice structures manufactured using selective laser melting [D]. Chongqing: Chongqing University, 2016.
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  6794
  • HTML全文浏览量:  3431
  • PDF下载量:  35
出版历程
  • 收稿日期:  2020-06-12
  • 修回日期:  2020-07-03

目录

    /

    返回文章
    返回