强冲击载荷下边界对固支方板的毁伤破坏试验

朱文睿 伍星星 刘建湖 汪俊 赵延杰 李天然

朱文睿, 伍星星, 刘建湖, 汪俊, 赵延杰, 李天然. 强冲击载荷下边界对固支方板的毁伤破坏试验[J]. 高压物理学报, 2021, 35(1): 014202. doi: 10.11858/gywlxb.20200565
引用本文: 朱文睿, 伍星星, 刘建湖, 汪俊, 赵延杰, 李天然. 强冲击载荷下边界对固支方板的毁伤破坏试验[J]. 高压物理学报, 2021, 35(1): 014202. doi: 10.11858/gywlxb.20200565
ZHU Wenrui, WU Xingxing, LIU Jianhu, WANG Jun, ZHAO Yanjie, LI Tianran. Failure of Square Plate under the Influence of Boundary Conditions Subjected to Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014202. doi: 10.11858/gywlxb.20200565
Citation: ZHU Wenrui, WU Xingxing, LIU Jianhu, WANG Jun, ZHAO Yanjie, LI Tianran. Failure of Square Plate under the Influence of Boundary Conditions Subjected to Shock Loading[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 014202. doi: 10.11858/gywlxb.20200565

强冲击载荷下边界对固支方板的毁伤破坏试验

doi: 10.11858/gywlxb.20200565
基金项目: 国家安全重大基础研究项目(613279);国防基础科研项目(JCKY2017207B054)
详细信息
    作者简介:

    朱文睿(1996-),男,本科,主要从事自动化试验测试技术研究. E-mail:zhuwenruipy@163.com

    通讯作者:

    李天然(1978-),男,博士,副教授,主要从事电气自动化测试研究. E-mail:litianran@njnu.edu.cn

  • 中图分类号: O347.3

Failure of Square Plate under the Influence of Boundary Conditions Subjected to Shock Loading

  • 摘要: 冲击载荷作用下边界条件对方板的毁伤破坏具有很大影响。利用落锤试验机开展了不同边界支撑下固支方板的冲击试验,为获取固支方板边界撕裂的典型破坏模式,专门设计加工了与固支方板尺寸相当的冲击锤头和可改变倒角的方板支撑框架。研究结果表明:(1)冲击载荷作用下,固支方板呈现出塑性大变形、单边撕裂、双边撕裂等典型破坏模式,倒角越小,方板越容易撕裂;(2)边界支撑对固支方板中心位移、整体变形轮廓影响较小,但对方板的撕裂长度、临界撕裂阈值存在较大影响;(3)不同边界支撑主要改变方板边界处的剪切应变,边界支撑倒角越小,剪切效果越明显,方板边界临界撕裂应变位于[0.191,0.241]区间。

     

  • 图  落锤试验装置示意图

    Figure  1.  Schematic diagram of drop hammer system

    图  工装框架内部示意图

    Figure  2.  Experimental inner frame structure

    图  试件塑性变形破坏模式(S9-1试件)

    Figure  3.  Plastic deformation failure mode (S9-1 specimen)

    图  试件撕裂破坏模式

    Figure  4.  Tearing failure mode of specimens

    图  落锤高度为400 mm时边界倒角对固支方板毁伤的影响

    Figure  5.  Dynamic behavior of square plates under boundary conditions with 400 mm hammer height

    图  落锤高度为500 mm时边界倒角对固支方板毁伤的影响

    Figure  6.  Dynamic behavior of square plates under boundary conditions with 500 mm hammer height

    图  落锤高度为700 mm时边界倒角对固支方板毁伤的影响

    Figure  7.  Dynamic behavior of square plates under boundary conditions with 700 mm hammer height

    图  不同边界倒角半径和落锤高度对固支方板中心位移的影响

    Figure  8.  Center displacement of square plates under different boundary chamfer radius and hammer height

    图  落锤高度为500 mm时边界倒角半径对固支方板中心位移的影响曲线

    Figure  9.  Center displacement curves of plates under different boundary chamfer radius with 500 mm hammer height

    图  10  落锤高度为700 mm时边界倒角半径对固支方板中心位移的影响曲线

    Figure  10.  Center displacement curves of plates under different boundary chamfer radius with 700 mm hammer height

    图  11  边界倒角半径对固支方板裂缝总长度的影响

    Figure  11.  Total crack length of square plates underdifferent boundary chamfer radius

    图  12  边界倒角半径对固支方板长裂缝长度的影响

    Figure  12.  Longest crack length of square plates underdifferent boundary chamfer radius

    图  13  落锤高度为400 mm时不同倒角半径固支方板的仿真计算结果

    Figure  13.  Simulation results of square plates under different boundary chamfer radius with 400 mm hammer height

    图  14  不同倒角下固支方板最大塑性应变点的应力状态

    Figure  14.  Stress triaxility of the max PEEQ element of square plates under different boundary chamfer radius

    表  1  试验工况及试验结果

    Table  1.   Experiment cases and experiment results

    Experiment
    case
    Specimen No.R/mmh/mmv/(m·s−1)M/kgE/kJExperiment results
    D/mmFailure mode
    1S6-164002.802 0247.93441.2One-side tearing
    2S6-265003.132 0249.91745.7Double-side tearing
    3S6-366003.422 02411.90152.0One-side tearing
    4S6-467003.702 02413.88456.4Double-side tearing
    5S9-194002.802 0247.93439.3Plastic deformation
    6S9-295003.132 0249.91745.9One-side tearing
    7S9-396003.422 02411.90148.6Double-side tearing
    8S9-497003.702 02413.88455.8Double-side tearing
    9S12-1124002.802 0247.93439.8Plastic deformation
    10S12-2125003.132 0249.91744.6One-side tearing
    11S12-3126003.422 02411.90151.1One-side tearing
    12S12-4127003.702 02413.88456.9One-side tearing
    下载: 导出CSV

    表  2  不同工况下固支方板的裂缝长度

    Table  2.   Crack length of square plates under different experiment cases

    Experiment
    case
    Specimen
    No.
    R/mmh/mmFailure modeCrack length/mm
    Crack 1Crack 2
    1S6-16400One-side tearing207
    2S6-26500Double-side tearing216125
    3S6-36600One-side tearing290
    4S6-46700Double-side tearing294184
    5S9-19400Plastic deformation
    6S9-29500One-side tearing195
    7S9-39600Double-side tearing250213
    8S9-49700Double-side tearing184132
    9S12-112400Plastic deformation
    10S12-212500One-side tearing170
    11S12-312600One-side tearing230
    12S12-412700One-side tearing280
    下载: 导出CSV

    表  3  最大塑性应变单元结果对比

    Table  3.   Comparison of the max PEEQ results

    Experiment
    case
    R/mmh/mmPlastic deformation Stress triaxility
    PEEQ$\varepsilon_{11} $$\varepsilon_{33} $$\varepsilon_{13} $
    164000.241–0.1370.1390.268[0.5, 0.6]
    594000.191–0.1330.1300.219[0.5, 0.6]
    9124000.185–0.1410.1330.210[0.5, 0.6]
    下载: 导出CSV
  • [1] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads—an experimental study [J]. International Journal of Impact Engineering, 1996, 18(1): 99–116. doi: 10.1016/0734-743X(95)00018-2
    [2] RAMAJEYATHILAGAM K, VENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock [J]. International Journal of Impact Engineering, 2004, 30(6): 699–719. doi: 10.1016/j.ijimpeng.2003.01.001
    [3] NURICK G N, RADFORD A M. Deformation and tearing of clamped circular plates subjected to localised central blastloads [C]//REDDY B D. Recent developments in computational and applied mechanics. A Volume in Honour of John B Martin, 1997: 276–301.
    [4] RAJENDRAN R, NARASIMHAN K. Damage prediction of clamped circular plates subjected to contact underwater explosion [J]. International Journal of Impact Engineering, 2001, 25(4): 373–386. doi: 10.1016/S0734-743X(00)00051-8
    [5] JACOB N, YUEN S C K, NURICK G N, et al. Scaling aspects of quadrangular plates subjected to localised blast loads—experiments and predictions [J]. International Journal of Impact Engineering, 2004, 30(8/9): 1179–1208.
    [6] LONGÈRE P, GEFFROY-GRÈRE A-G, LEBLÉ B, et al. Ship structure steel plate failure under near-filed air-blast loading: numerical simulations vs experiment [J]. International Journal of Impact Engineering, 2013, 62: 88–98.
    [7] 李典, 郑羽, 陈长海, 等. 空爆载荷下舰船典型结构损伤研究进展 [J]. 船舶力学, 2020, 24(4): 543–557. doi: 10.3969/j.issn.1007-7294.2020.04.015

    LI D, ZHENG Y, CHEN C H, et al. Review on damage of typical ship protective structures under explosion load [J]. Journal of Ship Mechanics, 2020, 24(4): 543–557. doi: 10.3969/j.issn.1007-7294.2020.04.015
    [8] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads [J]. Engineering Structure, 2007, 29(10): 2723–2736. doi: 10.1016/j.engstruct.2007.01.021
    [9] TEELING-SMITH R G, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads [J]. International Journal of Impact Engineering, 1991, 11(1): 77–91. doi: 10.1016/0734-743X(91)90032-B
    [10] SHEN W Q, JONES N. Dynamic response and failure of fully clamped circular plates under impulsive loading [J]. International Journal of Impact Engineering, 1993, 13(2): 259–278. doi: 10.1016/0734-743X(93)90096-P
    [11] BONORCHIS D, NURICK G N. The influence of boundary conditions on the loading of rectangular plates subjected to localised blast loading—importance in numerical simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 40–52. doi: 10.1016/j.ijimpeng.2008.03.003
    [12] NURICK G N, GELMAN M E, MARSHELL N S. Tearing of blast loaded plates with clamped boundary conditions [J]. International Journal of Impact Engineering, 1996, 18(7/8): 803–827.
    [13] MENKES S B, OPAT H J. Broken beams—tearing and shear failures in explosively loaded clamped beams [J]. Experimental Mechanics, 1973, 13(11): 480–486. doi: 10.1007/BF02322734
    [14] BAO Y B, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81–98. doi: 10.1016/j.ijmecsci.2004.02.006
    [15] TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2006, 73(12): 1653–1678. doi: 10.1016/j.engfracmech.2006.01.009
    [16] BAO Y B, WIERZBICKI T. On the cut-off value of negative triaxiality for fracture [J]. Engineering Fracture Mechanics, 2005, 72(7): 1049–1069. doi: 10.1016/j.engfracmech.2004.07.011
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  5610
  • HTML全文浏览量:  2760
  • PDF下载量:  43
出版历程
  • 收稿日期:  2020-06-06
  • 修回日期:  2020-06-23
  • 发布日期:  2020-08-25

目录

    /

    返回文章
    返回