分体式侵彻体斜侵彻钢靶的弹道稳定性数值模拟

吴翰林 屈可朋 沈飞 周涛 郭洪福 谷鸿平

吴翰林, 屈可朋, 沈飞, 周涛, 郭洪福, 谷鸿平. 分体式侵彻体斜侵彻钢靶的弹道稳定性数值模拟[J]. 高压物理学报, 2020, 34(6): 065101. doi: 10.11858/gywlxb.20200563
引用本文: 吴翰林, 屈可朋, 沈飞, 周涛, 郭洪福, 谷鸿平. 分体式侵彻体斜侵彻钢靶的弹道稳定性数值模拟[J]. 高压物理学报, 2020, 34(6): 065101. doi: 10.11858/gywlxb.20200563
WU Hanlin, QU Kepeng, SHEN Fei, ZHOU Tao, GUO Hongfu, GU Hongping. Numerical Simulation of Ballistic Stability of Split Penetrator Penetrating Steel Target[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065101. doi: 10.11858/gywlxb.20200563
Citation: WU Hanlin, QU Kepeng, SHEN Fei, ZHOU Tao, GUO Hongfu, GU Hongping. Numerical Simulation of Ballistic Stability of Split Penetrator Penetrating Steel Target[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065101. doi: 10.11858/gywlxb.20200563

分体式侵彻体斜侵彻钢靶的弹道稳定性数值模拟

doi: 10.11858/gywlxb.20200563
基金项目: 国家安全重大基础研究项目(05020501)
详细信息
    作者简介:

    吴翰林(1992-),男,硕士研究生,主要从事侵彻战斗部研究. E-mail:wuhanlin714@163.com

    通讯作者:

    周 涛(1979-),男,博士,研究员,主要从事毁伤技术及战斗部设计研究. E-mail:sflantian@163.com

  • 中图分类号: TJ55; O385

Numerical Simulation of Ballistic Stability of Split Penetrator Penetrating Steel Target

  • 摘要: 为提升弹体侵彻钢靶的弹道稳定性,设计了一种分体式侵彻体,运用LS-DYNA数值模拟得到了分体式侵彻体以不同着速、15°着角斜侵彻14 mm厚单层圆钢靶的弹道变化规律,讨论了前导体头部厚度和前导体安装间隙对弹体俯仰角和弹道偏移的影响机制。结果表明:分体式侵彻体可有效提升侵彻弹道稳定性;着速为500~700 m/s时,前导体头部厚度越大,弹体俯仰角度和弹道偏移越小,着速为800 m/s时,前导体头部厚度适中的弹体俯仰角和弹道偏移最小;前导体安装间隙能在特定工况下减少8%~12%的弹道偏转。这是由于低速侵彻时前导体未完全破坏,应力波的衰减程度随头部厚度的增加而增加;高速侵彻时前导体逐渐破损至完全破坏,可以最大程度地吸收撞击能量,提升弹道稳定性的效果最佳。增加前导体安装间隙可提升低速侵彻或头部厚度较大的前导体的破损程度。

     

  • 图  侵彻体形状示意图

    Figure  1.  Schematic of penetrator

    图  有限元模型示意图

    Figure  2.  Schematic of finite element model

    图  分体式侵彻体斜侵彻单层钢靶过程

    Figure  3.  Process of split penetrator obliquely penetrating a single-layer steel target

    图  分体式侵彻体与整体式侵彻体的俯仰角曲线对比

    Figure  4.  Comparison of pitch angles between split penetrator and integral penetrator

    图  分体式侵彻体与整体式侵彻体弹道偏移对比

    Figure  5.  Comparison of ballistic deviation between split penetrator and integral penetrator

    图  分体式侵彻体与整体式侵彻体在侵彻前期的受力云图

    Figure  6.  Stress nephograms of split penetrator and integral penetrator at the early stage

    图  前导体头部厚度不同时侵彻体俯仰角对比

    Figure  7.  Comparison of pitch angle of projector with different thicknesses of protective shell

    图  不同前导体头部厚度的侵彻体弹道偏移对比

    Figure  8.  Comparison of trajectory deviation of penetrator with different thicknesses of protective shell

    图  有无安装间隙的分体式侵彻体俯仰角对比曲线

    Figure  9.  Comparison curve of pitch angle of split penetrator with or without installation clearance

    图  10  有无安装间隙的分体式侵彻体弹道偏移对比曲线

    Figure  10.  Comparison curve of ballistic deviation of split penetrator with or without installation clearance

    表  1  侵彻体和靶板的Johnson-Cook材料参数

    Table  1.   Johnson-Cook parameters of penetrator and target plate

    ComponentA/MPaB/MPanCm${T_{{ {\rm{m} } } } }$/K
    Penetrator15004600.700.0251.091793
    Target 3502750.360.0221.001795
    下载: 导出CSV

    表  2  侵彻体和靶板的Grüneisen状态方程参数

    Table  2.   Parameters of Grüneisen equation of state for penetrator and target plate

    Component${\;\rho_0}$/(g·cm–3)E/GPaS${\gamma _0}$$a$c/(km·s–1)
    Penetrator7.8001.492.170.464.569
    Target7.8502.201.930.464.440
    下载: 导出CSV
  • [1] 周忠彬, 马田, 赵永刚, 等. 不同材料弹体超声速侵彻钢筋混凝土靶的结构破坏对比实验 [J]. 高压物理学报, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841

    ZHOU Z B, MA T, ZHAO Y G, et al. Comparative experiment on structural damage of supersonic projectiles with different metal materials penetrating into reinforced concrete targets [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025101. doi: 10.11858/gywlxb.20190841
    [2] 刘天宋, 高旭东, 李继政, 等. 混凝土侵彻过程中弹道偏转的影响因素和规律研究 [J]. 弹箭与制导学报, 2014, 34(2): 67–70, 74. doi: 10.3969/j.issn.1673-9728.2014.02.018

    LIU T S, GAO X D, LI J Z, et al. The research of influence factors and law of trajectory deflection in the process of penetration into concrete targets [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2014, 34(2): 67–70, 74. doi: 10.3969/j.issn.1673-9728.2014.02.018
    [3] 王可慧, 宁建国, 李志康, 等. 高速弹体非正侵彻混凝土靶的弹道偏转实验研究 [J]. 高压物理学报, 2013, 27(4): 561–566. doi: 10.11858/gywlxb.2013.04.015

    WANG K H, NING J G, LI Z K, et al. Ballistic trajectory of high-velocity projectile obliquely penetrating concrete target [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 561–566. doi: 10.11858/gywlxb.2013.04.015
    [4] JENA P K, JAGTAP N, KUMAR K S, et al. Some experimental studies on angle effect in penetration [J]. International Journal of Impact Engineering, 2010, 37(5): 489–501. doi: 10.1016/j.ijimpeng.2009.11.009
    [5] 薛建锋, 沈培辉, 王晓鸣. 弹体斜侵彻混凝土过程中弹道偏转仿真分析 [J]. 系统仿真学报, 2017, 29(8): 1801–1808. doi: 10.14077/j.issn.1007-7812.2018.02.017

    XUE J F, SHEN P H, WANG X M. Simulation analysis on ballistic deflection of projectile obliquely penetrating into concrete [J]. Journal of System Simulation, 2017, 29(8): 1801–1808. doi: 10.14077/j.issn.1007-7812.2018.02.017
    [6] 葛超, 董永香, 陆志超, 等. 弹丸头部对斜侵彻弹道偏转影响研究 [J]. 兵工学报, 2015, 36(2): 255–262. doi: 10.3969/j.issn.1000-1093.2015.02.010

    GE C, DONG Y X, LU Z C, et al. Ballistic deflection on oblique penetration of projectiles with different noses [J]. Acta Armamentarii, 2015, 36(2): 255–262. doi: 10.3969/j.issn.1000-1093.2015.02.010
    [7] 路志超. 低速弹丸对金属靶的斜侵彻弹道机理研究 [D]. 北京: 北京理工大学, 2015: 59–62.

    LU Z C. The research on ballistic mechanism of oblique penetration on metal target by low-speed projectiles [D]. Beijing: Beijing Institute of Technology, 2015: 59–62.
    [8] WU H, CHEN X W, FANG Q, et al. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target part Ⅲ: terminal ballistic trajectory analyses [J]. Acta Mechanica Sinica, 2015, 31(4): 558–569. doi: 10.1007/s10409-015-0423-8
    [9] RICCHIAZZI A J, ROECKER E T, BROWN C J. Design of a low L/D deep earth penetrator: ADA070532 [R]. Aberdeen: US Ballistic Research Laboratory, 1979.
    [10] 乔相信, 郭克强, 洪晓文, 等. 球形头部弹丸侵彻运动靶板的数值模拟 [J]. 火力与指挥控制, 2017, 42(3): 84–87. doi: 10.3969/j.issn.1002-0640.2017.03.020

    QIAO X X, GUO K Q, HONG X W, et al. Numerical simulation of spherical head projectile penetrating into the moving target [J]. Fire Control & Command Control, 2017, 42(3): 84–87. doi: 10.3969/j.issn.1002-0640.2017.03.020
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  7853
  • HTML全文浏览量:  3444
  • PDF下载量:  70
出版历程
  • 收稿日期:  2020-05-28
  • 修回日期:  2020-06-09
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回