[1] |
GIBSON L J, ASHBY M F. Cellular solids: structure and properties [M]. Oxford: Pergamon Press, 1997.
|
[2] |
ASHBY M F, EVANS A G, FLECK N A, et al. Metal foams: a design guide [J]. Applied Mechanics Reviews, 2012, 54(6): B105–B106. doi: 10.1115/1.1421119
|
[3] |
ANDREWS E W, GIBSON L J, ASHBY M F. The creep of cellular solids [J]. Acta Materialia, 1999, 47(10): 2853–2863. doi: 10.1016/S1359-6454(99)00150-0
|
[4] |
HODGE A M, DUNAND D C. Measurement and modeling of creep in open-cell NiAl foams [J]. Metallurgical and Materials Transactions A, 2003, 34(10): 2353–2363. doi: 10.1007/s11661-003-0298-3
|
[5] |
卢子兴, 黄纪翔, 袁泽帅. 微结构对泡沫材料蠕变性能的影响 [J]. 复合材料学报, 2016, 33(11): 2641–2648. doi: 10.13801/j.cnki.fhclxb.20160411.007LU Z X, HUANG J X, YUAN Z S. Influence of micro-structure on creep properties of foam materials [J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2641–2648. doi: 10.13801/j.cnki.fhclxb.20160411.007
|
[6] |
WARREN W E, KRAYNIK A M. The nonlinear elastic behavior of open-cell foams [J]. Journal of Applied Mechanics, 1991, 58(2): 376–381. doi: 10.1115/1.2897196
|
[7] |
ANDREWS E W, GIBSON L J. The role of cellular structure in creep of two-dimensional cellular solids [J]. Materials Science and Engineering A, 2001, 303(1/2): 120–126. doi: 10.1016/S0921-5093(00)01854-2
|
[8] |
OPPENHEIMER S M, DUNAND D C. Finite element modeling of creep deformation in cellular metals [J]. Acta Materialia, 2007, 55(11): 3825–3834. doi: 10.1016/j.actamat.2007.02.033
|
[9] |
HUANG J S, GIBSON L J. Creep of open-cell Voronoi foams [J]. Materials Science and Engineering A, 2003, 339(1/2): 220–226. doi: 10.1016/S0921-5093(02)00152-1
|
[10] |
ZHU H X, MILLS N J. Modelling the creep of open-cell polymer foams [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(7): 1437–1457. doi: 10.1016/S0022-5096(98)00116-1
|
[11] |
SU B Y, ZHOU Z W, WANG Z H, et al. Effect of defects on creep behavior of cellular materials [J]. Materials Letters, 2014, 136: 37–40. doi: 10.1016/j.matlet.2014.07.185
|
[12] |
ZHOU Z W, WANG Z H, ZHAO L M, et al. Uniaxial and biaxial failure behaviors of aluminum alloy foams [J]. Composites Part B: Engineering, 2014, 61: 340–349. doi: 10.1016/j.compositesb.2013.01.004
|
[13] |
TAGARIELLI V L, DESHPANDE V S, FLECK N A, et al. A constitutive model for transversely isotropic foams, and its application to the indentation of balsa wood [J]. International Journal of Mechanical Sciences, 2005, 47(4/5): 666–686. doi: 10.1016/j.ijmecsci.2004.11.010
|
[14] |
SU B Y, ZHOU Z W, SHU X F, et al. Multiaxial creep of transversely isotropic foams [J]. Materials Science and Engineering A, 2016, 658: 289–295. doi: 10.1016/j.msea.2016.02.018
|
[15] |
KESLER O, CREWS L K, GIBSON L J. Creep of sandwich beams with metallic foam cores [J]. Materials Science and Engineering A, 2003, 341(1/2): 264–272. doi: 10.1016/S0921-5093(02)00239-3
|
[16] |
CHEN C, FLECK N A, ASHBY M F. Creep response of sandwich beams with a metallic foam core [J]. Advanced Engineering Materials, 2002, 4(10): 777–780. doi: 10.1002/1527-2648(20021014)4:10<777::AID-ADEM777>3.0.CO;2-A
|
[17] |
FAN Z G, CHEN C, LU T J. Multiaxial creep of low density open-cell foams [J]. Materials Science and Engineering A, 2012, 540: 83–88. doi: 10.1016/j.msea.2012.01.086
|
[18] |
AYYAGARI R S, VURAL M. Multiaxial yield surface of transversely isotropic foams: Part Ⅰ–modeling [J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 49–67. doi: 10.1016/j.jmps.2014.10.005
|
[19] |
SULLIVAN R M, GHOSN L J, LERCH B A. A general tetrakaidecahedron model for open-celled foams [J]. International Journal of Solids and Structures, 2008, 45(6): 1754–1765. doi: 10.1016/j.ijsolstr.2007.10.028
|
[20] |
CHEN C, LU T J, FLECK N A. Effect of imperfections on the yielding of two-dimensional foams [J]. Journal of the Mechanics and Physics of Solids, 1999, 47(11): 2235–2272. doi: 10.1016/S0022-5096(99)00030-(inChinese)
|
[21] |
CHEN C, LU T J. A phenomenological framework of constitutive modelling for incompressible and compressible elasto-plastic solids [J]. International Journal of Solids and Structures, 2000, 37(52): 7769–7786. doi: 10.1016/S0020-7683(00)00003-2
|
[22] |
ALKHADER M, VURAL M. An energy-based anisotropic yield criterion for cellular solids and validation by biaxial FE simulations [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(5): 871–890. doi: 10.1016/j.jmps.2008.12.005
|