冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应

武晓东 张海广 王瑜 孟祥生

武晓东, 张海广, 王瑜, 孟祥生. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应[J]. 高压物理学报, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
引用本文: 武晓东, 张海广, 王瑜, 孟祥生. 冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应[J]. 高压物理学报, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
WU Xiaodong, ZHANG Haiguang, WANG Yu, MENG Xiangsheng. Dynamic Responses of Nare-Like Voronoi Structure under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559
Citation: WU Xiaodong, ZHANG Haiguang, WANG Yu, MENG Xiangsheng. Dynamic Responses of Nare-Like Voronoi Structure under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 064201. doi: 10.11858/gywlxb.20200559

冲击载荷下仿贝壳珍珠层Voronoi结构的动态力学响应

doi: 10.11858/gywlxb.20200559
基金项目: 国家自然科学基金(11702185);山西省高校创新科技计划(173230113-S)
详细信息
    作者简介:

    武晓东(1983-),男,博士,讲师,主要从事复合材料动力学研究. E-mail:wuxiaodong@tyut.edu.cn

  • 中图分类号: O347.1

Dynamic Responses of Nare-Like Voronoi Structure under Impact Loading

  • 摘要: 贝壳珍珠层复合结构是一种有效的抗压结构系统,微观上具有Voronoi随机结构,具有良好的力学特性。为了研究仿贝壳珍珠层Voronoi结构在冲击载荷下的动态力学响应,建立了一种铝/乙烯基复合材料的三维Voronoi模型。首先,应用随机Voronoi技术建立仿贝壳珍珠层Voronoi随机模型,然后在随机多边形铝片之间引入黏结层,模拟黏结和分层过程,从最大变形、损伤分布和耗散能量等方面探讨Voronoi片板模型在弹丸冲击荷载作用下的力学性能,并与规则片板模型进行对比分析。结果显示:Voronoi结构更有利于冲击能量的扩散与吸收,减小应力集中,更好地发挥能量共享机制;而规则模型的冲击损伤主要集中在弹丸冲击点附近区域。最后讨论了黏结层厚度和分块尺寸对Voronoi模型力学性能的影响,结果表明:分块尺寸对Voronoi模型抗冲击性能的影响很小;黏结层对损伤耗散能和塑性能的影响很明显,黏结层越薄,模型的抗冲击性能越好。

     

  • 图  (a) Voronoi图的初始网格构型;(b)每个站点都在一个圆圈区域内随机移动;(c)新的Voronoi图是从新的站点系统中生成,通过矩形裁剪,形成有限区域的随机Voronoi图[25]

    Figure  1.  (a) Initial grid formation of Voronoi diagram; (b) each site moves randomly within a circle region; (c) a new Voronoi diagram is generated from the new site system, and by a rectangle cut, a finite Voronoi diagram is generated[25]

    图  规则8 × 8模型和随机Voronoi模型的示意图

    Figure  2.  Schematic of regular 8 × 8 model and random Voronoi models

    图  模型边界条件和加载条件

    Figure  3.  Boundary condition and loading of the model

    图  不同时刻规则片板模型的von Mises应力云图剖视图

    Figure  4.  Cutaway views of von Mises stress contours of regular plate model at different times

    图  不同时刻Voronoi片板模型的von Mises应力云图剖视图

    Figure  5.  Cutaway views of von Mises stress contours of Voronoi plate model at different times

    图  3.00 ms时规则片板模型的von Mises应力云图俯视图

    Figure  6.  Top view of von Mises stress contours of regular plate model at 3.00 ms

    图  3.00 ms时Voronoi片板模型的von Mises应力云图俯视图

    Figure  7.  Top view of von Mises stress contours of Voronoi plate model at 3.00 ms

    图  规则模型和不同分块尺寸Voronoi模型的损伤耗能

    Figure  8.  Damage energy of regular model and Voronoi models with different block sizes

    图  规则模型和不同分块尺寸Voronoi模型的塑性能

    Figure  9.  Plastic energy of regular model and Voronoi models with different block sizes

    图  10  具有不同黏性层厚度的Voronoi模型的损伤耗能

    Figure  10.  Damage energy of Voronoi models with different adhesive thicknesses

    图  11  具有不同黏性层厚度的Voronoi模型的塑性能

    Figure  11.  Plastic energy of Voronoi model with different adhesive thicknesses

    表  1  铝片的材料参数

    Table  1.   Parameters of aluminum plate

    Material$\;\rho $/(kg·m−3$\nu $E/GPa
    Aluminum27500.372
    下载: 导出CSV

    表  2  Cohesive模型的材料参数

    Table  2.   Parameters of Cohesive model

    $t_{\rm{n} }^{{0} }$/MPa$t_{\rm{s} }^{{0} }$/MPa$t_{\rm{t} }^{{0} }$/MPa$G_{\rm{n} }^{{0} }$/(kJ·m−2)$G_{\rm{s} }^{{0} }$/(kJ·m−2)$G_{\rm{t} }^{{0} }$/(kJ·m−2)$\;\rho $/(kg·m−3)Es/GPaEt/GPa
    8080801111 85041.5
    下载: 导出CSV

    表  3  Johnson-Cook模型参数[25]

    Table  3.   Parameters of Johnson-Cook model[25]

    MaterialA/MPaB/MPanCm
    Aluminum3916840.4360.009592
    下载: 导出CSV
  • [1] CURREY J D. Mechanical properties of mother of pearl in tension [J]. Proceedings of the Royal Society B: Biological Sciences, 1977, 196(1125): 443–463. doi: 10.1098/rspb.1977.0050
    [2] BARTHELAT F, TANG H, ZAVATTIERI P D, et al. On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(2): 306–337. doi: 10.1016/j.jmps.2006.07.007
    [3] IMBALZANO G, TRAN P, NGO T D, et al. A numerical study of auxetic composite panels under blast loadings [J]. Composite Structures, 2016, 135: 339–352. doi: 10.1016/j.compstruct.2015.09.038
    [4] NGUYEN Q T, NGO T D, TRAN P, et al. Influences of clay and manufacturing on fire resistance of organoclay/thermoset nanocomposites [J]. Composites Part A: Applied Science and Manufacturing, 2015, 74: 26–37. doi: 10.1016/j.compositesa.2015.03.014
    [5] PRO J W, LIM R K, PETZOLD L R, et al. GPU-based simulations of fracture in idealized brick and mortar composites [J]. Journal of the Mechanics and Physics of Solids, 2015, 80: 68–85. doi: 10.1016/j.jmps.2015.03.011
    [6] ZHANG N, YANG S F, XIONG L M, et al. Nanoscale toughening mechanism of nacre tablet [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 53: 200–209. doi: 10.1016/j.jmbbm.2015.08.020
    [7] SARIKAYA M. An introduction to biomimetics: a structural viewpoint [J]. Microscopy Research and Technique, 1994, 27(5): 360–375. doi: 10.1002/jemt.1070270503
    [8] GAO H J, JI B H, JÄGER I L, et al. Materials become insensitive to flaws at nanoscale: lessons from nature [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(10): 5597–5600. doi: 10.1073/pnas.0631609100
    [9] SONG F, SOH A K, BAI Y L. Structural and mechanical properties of the organic matrix layers of nacre [J]. Biomaterials, 2003, 24(20): 3623–3631. doi: 10.1016/S0142-9612(03)00215-1
    [10] BARTHELAT F. Nacre from mollusk shells: a model for high-performance structural materials [J]. Bioinspiration & Biomimetics, 2010, 5(3): 035001. doi: 10.1088/1748-3182/5/3/035001
    [11] TRAN P, NGO T D, MENDIS P. Bio-inspired composite structures subjected to underwater impulsive loading [J]. Computational Materials Science, 2014, 82: 134–139. doi: 10.1016/j.commatsci.2013.09.033
    [12] FLORES-JOHNSON E A, SHEN L M, GUIAMATSIA I, et al. A numerical study of bioinspired nacre-like composite plates under blast loading [J]. Composite Structures, 2015, 126: 329–336. doi: 10.1016/j.compstruct.2015.02.083
    [13] DUTTA A, TEKALUR S A. Crack tortuousity in the nacreous layer-topological dependence and biomimetic design guideline [J]. International Journal of Solids and Structures, 2014, 51(2): 325–335. doi: 10.1016/j.ijsolstr.2013.10.006
    [14] KOTHA S P, LI Y, GUZELSU N. Micromechanical model of nacre tested in tension [J]. Journal of Materials Science, 2001, 36(8): 2001–2007. doi: 10.1023/A:1017526830874
    [15] BARTHELAT F, RABIEI R. Toughness amplification in natural composites [J]. Journal of the Mechanics and Physics of Solids, 2011, 59(4): 829–840. doi: 10.1016/j.jmps.2011.01.001
    [16] SONG F, BAI Y L. Effects of nanostructures on the fracture strength of the interfaces in nacre [J]. Journal of Materials Research, 2003, 18(8): 1741–1744. doi: 10.1557/JMR.2003.0239
    [17] RABIEI R, BEKAH S, BARTHELAT F. Failure mode transition in nacre and bone-like materials [J]. Acta Biomaterialia, 2010, 6(10): 4081–4089. doi: 10.1016/j.actbio.2010.04.008
    [18] SHAO Y, ZHAO H P, FENG X Q, et al. Discontinuous crack-bridging model for fracture toughness analysis of nacre [J]. Journal of the Mechanics and Physics of Solids, 2012, 60(8): 1400–1419. doi: 10.1016/j.jmps.2012.04.011
    [19] GHAZLAN A, NGO T, VAN LE T, et al. Blast performance of a bio-mimetic panel based on the structure of nacre: a numerical study [J]. Composite Structures, 2020, 234: 111691. doi: 10.1016/j.compstruct.2019.111691
    [20] KO K, JIN S, LEE S E, et al. Impact resistance of nacre-like composites diversely patterned by 3D printing [J]. Composite Structures, 2020, 238: 111951. doi: 10.1016/j.compstruct.2020.111951
    [21] WU K J, ZHENG Z J, ZHANG S S, et al. Interfacial strength-controlled energy dissipation mechanism and optimization in impact-resistant nacreous structure [J]. Materials & Design, 2019, 163: 107532. doi: 10.1016/j.matdes.2018.12.004
    [22] 刘金义, 刘爽. Voronoi图应用综述 [J]. 工程图学学报, 2004, 25(2): 125–132. doi: 10.3969/j.issn.1003-0158.2004.02.023

    LIU J Y, LIU S. A survey on applications of Voronoi diagrams [J]. Journal of Engineering Graphics, 2004, 25(2): 125–132. doi: 10.3969/j.issn.1003-0158.2004.02.023
    [23] BARGMANN S, KLUSEMANN B, MARKMANN J, et al. Generation of 3D representative volume elements for heterogeneous materials: a review [J]. Progress in Materials Science, 2018, 96: 322–384. doi: 10.1016/j.pmatsci.2018.02.003
    [24] BAHMANI A, LI G, WILLETT T L, et al. Generating realistic representative microstructure of biomimetic composite materials for computational assessment of mechanical properties [J]. Materials Today: Proceedings, 2019, 7: 373–381. doi: 10.1016/j.matpr.2018.11.098
    [25] GHAZLAN A, NGO T D, TRAN P. Three-dimensional Voronoi model of a nacre-mimetic composite structure under impulsive loading [J]. Composite Structures, 2016, 153: 278–296. doi: 10.1016/j.compstruct.2016.06.020
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  8441
  • HTML全文浏览量:  3823
  • PDF下载量:  60
出版历程
  • 收稿日期:  2020-05-21
  • 修回日期:  2020-06-12

目录

    /

    返回文章
    返回