EFP水下成型影响因素的数值模拟

孙远翔 胡皓亮 张之凡

孙远翔, 胡皓亮, 张之凡. EFP水下成型影响因素的数值模拟[J]. 高压物理学报, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557
引用本文: 孙远翔, 胡皓亮, 张之凡. EFP水下成型影响因素的数值模拟[J]. 高压物理学报, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557
SUN Yuanxiang, HU Haoliang, ZHANG Zhifan. Simulation Study on Influential Factors of EFP Underwater Forming[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557
Citation: SUN Yuanxiang, HU Haoliang, ZHANG Zhifan. Simulation Study on Influential Factors of EFP Underwater Forming[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065104. doi: 10.11858/gywlxb.20200557

EFP水下成型影响因素的数值模拟

doi: 10.11858/gywlxb.20200557
基金项目: 国家自然科学基金青年科学基金(11802025);爆炸科学与技术国家重点实验室自主研究课题(YBKT17-08)
详细信息
    作者简介:

    孙远翔(1967-),男,博士,副教授,主要从事爆轰理论研究. E-mail:sunyuanxiang002@126.com

    通讯作者:

    张之凡(1990-),女,博士,副教授,主要从事水下聚能装药研究. E-mail:zzf84952823@126.com

  • 中图分类号: O389

Simulation Study on Influential Factors of EFP Underwater Forming

  • 摘要: 由于密度、压力等物理量存在差异,爆炸成型弹丸(EFP)在空气和水中的成型过程差别较大。为了优化水下EFP的设计方案,利用AUTODYN有限元软件开展仿真研究,详细讨论了装药、药型罩及弹前空气域3部分共7个变量对EFP水下成型过程的影响,最终得出适合水下EFP装药的设计参数。根据仿真结果,总质量为1 kg的EFP装药优化后的设计参数:炸药长径比为1.5,炸药种类选择爆速较高的HMX,药型罩材料为紫铜,切向锥角$\alpha $为145°,壁厚$\delta $为2 mm,弹前空气域长度为3倍装药半径,起爆半径r为0.4倍装药半径。该方案对优化EFP速度、长径比及动能等有较好的效果。

     

  • 图  总体1/2模型

    Figure  1.  Overall 1/2 model

    图  EFP装药结构

    Figure  2.  EFP charge structure

    图  不同工况单位计算量用时

    Figure  3.  Unit calculation time for different conditions

    图  不同装药长径比EFP的速度时间曲线

    Figure  4.  t-v curves of EFP with different L/D charges

    图  长径比与EFP最大速度的关系

    Figure  5.  Variation of L/D with vmax of EFP

    图  不同类型装药EFP的速度-时间曲线

    Figure  6.  v-t curves of EFP with different charge types

    图  装药种类与EFP最大速度的关系

    Figure  7.  Variation of vmax of EFP with charge types

    图  不同药型罩材料EFP的速度-时间曲线

    Figure  8.  v-t curves of EFP with different liner material

    图  药型罩材料与EFP最大速度的关系

    Figure  9.  Variation of vmax of EFP with liner material

    图  10  不同α值EFP的速度-时间曲线

    Figure  10.  v-t curves of EFP with different $\alpha $ values

    图  11  $\alpha $值与EFP最大速度的关系

    Figure  11.  Variation of $\alpha $ values with vmax of EFP

    图  12  不同$\alpha $值对应的EFP形状

    Figure  12.  EFP shapes corresponding to different $\alpha$ values

    图  13  不同$\delta $值EFP的速度-时间曲线

    Figure  13.  v-t curves of EFP with different $\delta $ values

    图  14  $\delta $值与EFP最大速度的关系

    Figure  14.  Variation of $\delta $ values with vmax of EFP

    图  15  不同Lcavity/R值EFP的速度-时间曲线

    Figure  15.  v-t curves of EFP with different Lcavity/R values

    图  16  Lcavity/R值与EFP最大速度的关系

    Figure  16.  Variation of Lcavity/R values with vmax of EFP

    图  17  不同r/R值EFP的速度-时间曲线

    Figure  17.  t-v curves of EFP with different r/R values

    图  18  r/R值与EFP最大速度的关系

    Figure  18.  Variation of r/R values with vmax of EFP

    图  19  不同r值对应的EFP形状

    Figure  19.  EFP shapes corresponding to different r values

    表  1  原始模型参数

    Table  1.   Original model parameters

    TypeMaterialL/D$\alpha $/(°)$\delta $/mmLcavity/Rr/R
    TNTCopper0.5120220
    下载: 导出CSV

    表  2  Polynomial方程的主要参数

    Table  2.   Main parameters of Polynomial equation

    A1/GPaA2/GPaA3/GPaB0B1T1/GPaT2/GPa
    2.209.5414.570.280.282.200
    下载: 导出CSV

    表  3  JWL方程主要参数

    Table  3.   Main parameters of Polynomial equation

    TypeA/GPaB/GPaR1R2$\omega $$\,\rho$/kg·m−3DCJ/(m·s−1)E/(GJ·m−3)pCJ/GPa
    TNT373.773.754.150.900.35163069306.021.0
    B524.237.684.201.100.34171779808.529.5
    PBX581.456.804.101.000.35178783909.034.0
    H6758.078.514.901.100.201760747010.324.0
    HMX778.287.074.201.000.301891911010.542.0
    下载: 导出CSV

    表  4  Johnson-Cook方程的主要参数

    Table  4.   Main parameters of Johnson-Cook equation

    MaterialA/MPaB/MPanCm
    Steel7925100.260.0141.03
    Copper902920.310.0251.09
    Tungsten alloy15061770.120.0161.00
    Tantalum1421640.310.0570.88
    下载: 导出CSV

    表  5  试算工况

    Table  5.   Conditions of trial calculation

    Case No.Computational
    domain/(mm × mm)
    Grid size/
    (mm × mm)
    Grid quantityCase No.Computational
    domain/(mm × mm)
    Grid size/
    (mm × mm)
    Grid quantity
    11000 × 4000.5 × 0.516000008600 × 2400.2 × 0.23600000
    2800 × 3200.5 × 0.510240009600 × 2400.3 × 0.31600000
    3600 × 2400.5 × 0.557600010600 × 2400.4 × 0.4900000
    4500 × 2000.5 × 0.540000011600 × 2400.5 × 0.5576000
    5400 × 1600.5 × 0.525600012600 × 2400.6 × 0.6400000
    6300 × 1200.5 × 0.514400013600 × 2400.7 × 0.7293878
    7200 × 800.5 × 0.56400014600 × 2400.8 × 0.8225000
    下载: 导出CSV

    表  6  变量取值情况

    Table  6.   Summary of variable values

    L/DTypeMaterial$\alpha $/(°)$\delta $/mmLcavity/Rr/R
    0.5–3($\varDelta $ = 0.5)TNTCopper120220
    1.5TNT/B/H6/HMXCopper120220
    1.5HMXSteel/Copper/Tantalum/Tungsten145220
    1.5HMXCopper120–160($\varDelta$ = 5)220
    1.5HMXCopper1452–6($\varDelta $ = 0.5)20
    1.5HMXCopper1452-61–4($\varDelta$ = 0.5)0
    1.5HMXCopper1452-620–0.8($\varDelta$ = 0.2)
    下载: 导出CSV

    表  7  优化后的EFP参数

    Table  7.   Optimized EFP parameters

    L/DTypeMaterial$\alpha $/(°)$\delta $/mmLcavity/Rr/R
    1.5HMXCopper145230.4
    下载: 导出CSV

    表  8  优化前后效果对比

    Table  8.   Effect comparison before and after optimization

    Comparisonv/(m·s−1)L/DEk/JEFP shape
    Before optimization1947.70.391.50 × 105
    After optimization3204.60.733.64 × 105
    Previous achievements[2]1 935.00.76
    下载: 导出CSV
  • [1] AHMED M, MALIK A Q, HUANG S A, et al. Penetration evaluation of explosively formed projectiles through air and water using insensitive munition: simulative and experimental studies [J]. Engineering, Technology & Applied Science Research, 2016, 6(1): 913–916. doi: 10.5281/zenodo.45614
    [2] 曹兵. EFP战斗部水下作用特性研究 [J]. 火工品, 2007(3): 1–5. doi: 10.3969/j.issn.1003-1480.2007.03.001

    CAO B. Study on the performance of EFP warhead operating underwater [J]. Initiators & Pyrotechnics, 2007(3): 1–5. doi: 10.3969/j.issn.1003-1480.2007.03.001
    [3] 杨莉, 张庆明, 巨圆圆. 爆炸成型弹丸对含水复合装甲侵彻的实验研究 [J]. 北京理工大学学报, 2009, 29(3): 197–200.

    YANG L, ZHANG Q M, JU Y Y. Experimental study on the penetration of explosively formed projectile against water-partitioned armor [J]. Transactions of Beijing Institute of Technology, 2009, 29(3): 197–200.
    [4] MARKOVIC M, ELEK P, JARAMAZ S, et al. Numerical and analytical approach to the modeling of explosively formed projectiles [C]//Proceedings of the 6th International Scientific Conference on Defensive Technologies. Belgrade, Serbia, 2014: 1–6.
    [5] 杨伟苓, 姜春兰, 王在成, 等. 基于VESF起爆系统MEFP装药的数值与实验研究 [J]. 高压物理学报, 2013, 27(5): 751–756. doi: 10.11858/gywlxb.2013.05.015

    YANG W L, JIANG C L, WANG Z C, et al. Experimental study and numerical simulation on MEFP based on VESF initiation [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 751–756. doi: 10.11858/gywlxb.2013.05.015
    [6] 王雅君, 李伟兵, 李文彬, 等. 爆炸成型模拟弹丸水中飞行影响因素 [J]. 弹道学报, 2018, 30(1): 87–92.

    WANG Y J, LI W B, LI W B, et al. Factors influencing flight characteristics of simulated EFP in water [J]. Journal of Ballistics, 2018, 30(1): 87–92.
    [7] 林加剑, 贾虎. 爆炸成型弹丸有效装药结构理论分析及试验研究 [J]. 弹箭与制导学报, 2015, 35(1): 59–62, 67. doi: 10.15892/j.cnki.djzdxb.2015.01.016

    LIN J J, JIA H. Theoretical analysis and experimental research on the effective shaped charge with EFP [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(1): 59–62, 67. doi: 10.15892/j.cnki.djzdxb.2015.01.016
    [8] 郭腾飞, 李伟兵, 李文彬, 等. 钽罩结构参数对EFP成型及侵彻性能的控制 [J]. 高压物理学报, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667

    GUO T F, LI W B, LI W B, et al. Controlling effect of tantalum liner's structural parameters on EFP formation and penetration performance [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035104. doi: 10.11858/gywlxb.20170667
    [9] 鲁忠宝, 黎勤, 哈海荣. 不同能量输出结构战斗部水下爆炸毁伤威力试验研究 [J]. 水下无人系统学报, 2019, 27(1): 71–77.

    LU Z B, LI Q, HA H R. Experimental study on underwater explosion damage power of warhead with different energy output configuration [J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 71–77.
    [10] 樊菲, 李伟兵, 王晓鸣, 等. 爆炸成型弹丸战斗部不同侵彻着角下的毁伤能力研究 [J]. 高压物理学报, 2012, 26(2): 199–204. doi: 10.11858/gywlxb.2012.02.012

    FAN F, LI W B, WANG X M, et al. Research on the damaging ability of EFP warhead at different incidence angle [J]. Chinese Journal of High Pressure Physics, 2012, 26(2): 199–204. doi: 10.11858/gywlxb.2012.02.012
    [11] 于川, 王伟, 陈浩, 等. 小口径药型罩爆炸成型弹丸设计与多层钢靶侵彻实验 [J]. 高压物理学报, 2014, 28(1): 69–72. doi: 10.11858/gywlxb.2014.01.011

    YU C, WANG W, CHEN H, et al. Design of explosively formed projectile liner with small radius and experiment of penetrating multi-layer steel target [J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 69–72. doi: 10.11858/gywlxb.2014.01.011
    [12] 林加剑, 任辉启, 沈兆武. 尾翼型爆炸成型弹丸的数值模拟及实验研究 [J]. 高压物理学报, 2009, 23(3): 215–222. doi: 10.11858/gywlxb.2009.03.009

    LIN J J, REN H Q, SHEN Z W. Numerical and experimental study on explosively formed projectile with fins [J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 215–222. doi: 10.11858/gywlxb.2009.03.009
    [13] Century Dynamics Inc. Interactive non-linear dynamic analysis software AUTODYNTM user manual [M]. Houston, USA: Century Dynamics Inc., 2003.
  • 加载中
图(19) / 表(8)
计量
  • 文章访问数:  4414
  • HTML全文浏览量:  1789
  • PDF下载量:  29
出版历程
  • 收稿日期:  2020-05-13
  • 修回日期:  2020-06-03
  • 发布日期:  2020-10-25

目录

    /

    返回文章
    返回