第四代高能同步辐射光源HEPS及高压相关线站建设

李晓东 袁清习 徐伟 郑黎荣

李晓东, 袁清习, 徐伟, 郑黎荣. 第四代高能同步辐射光源HEPS及高压相关线站建设[J]. 高压物理学报, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
引用本文: 李晓东, 袁清习, 徐伟, 郑黎荣. 第四代高能同步辐射光源HEPS及高压相关线站建设[J]. 高压物理学报, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
LI Xiaodong, YUAN Qingxi, XU Wei, ZHENG Lirong. Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554
Citation: LI Xiaodong, YUAN Qingxi, XU Wei, ZHENG Lirong. Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. doi: 10.11858/gywlxb.20200554

第四代高能同步辐射光源HEPS及高压相关线站建设

doi: 10.11858/gywlxb.20200554
基金项目: 高能同步辐射光源国家重大科技基础设施项目(发改高技﹝2017﹞2173号)
详细信息
    作者简介:

    李晓东(1975-),男,博士,副研究员,主要从事同步辐射高压实验技术研究. E-mail:lixd@ihep.ac.cn

  • 中图分类号: O434.19; O521.3

Introduction of Fourth-Generation High Energy Photon Source HEPS and the Beamlines for High-Pressure Research

  • 摘要: 作为国家重大科技基础设施“十三五”规划重点建设的项目之一,目前,高能同步辐射光源已经在北京怀柔科学城开始建设,项目目标是建设具有极低发射度、重点覆盖高能区(约300 keV)的第四代同步辐射光源。新的高能光源将为科学研究提供光斑更小、亮度更高、相干性更好的X射线探针。同步辐射光源已经帮助科研人员在高压科学研究的诸多领域取得了丰硕的成果。反过来,应高压研究更高的需求,也在促进同步辐射实验技术的不断发展与进步。本文旨在对高能同步辐射光源首批线站中能够开展高压研究的高压光束线站、吸收谱学线站、高分辨谱学线站和显微成像线站的建设方案进行介绍,一方面有助于用户更好地了解相关设施,另一方面也希望结合用户需求完善后续线站的建设工作,共同推进高压学科在同步辐射领域的发展。

     

  • 图  HEPS一期光束线站布局

    Figure  1.  Beamlines layout of HEPS phase I

    图  线站插入件的亮度谱

    Figure  2.  Brilliance curves of different IDs

    图  高压光束线站光学布局

    Figure  3.  Optical layout of high-pressure beamline

    图  高压光束线站实验平台

    Figure  4.  Schematics of experimental tables

    图  X射线吸收谱学线站的元素覆盖示意图(红色虚线表示K边能量范围,蓝色虚线表示L边能量范围)

    Figure  5.  Schematic of element coverage of XAS (The red and blue dotted lines are energy ranges of K-edge and L-ledge, respectively)

    图  XAS线站光学布局

    Figure  6.  Optical layout of XAS beamline

    图  XAS实验平台

    Figure  7.  Layout of XAS experimental table

    图  硬X射线高分辨谱学线站核共振散射模式的光学布局

    Figure  8.  Optical layout of nuclear resonant scattering of the H2O beamline

    图  硬X射线高分辨谱学线站X射线拉曼散射模式的光学布局

    Figure  9.  Optical layout of X-ray Raman scattering of the H2O beamline

    图  10  核共振散射实验平台

    Figure  10.  Layout of nuclear resonant scattering experimental table

    图  11  X射线拉曼散射实验平台

    Figure  11.  Layout of X-ray Raman scattering experimental table

    图  12  TXM线站光学布局

    Figure  12.  Optical layout of TXM beamline

    图  13  TXM实验平台

    Figure  13.  Layout of TXM experimental table

    表  1  HEPS储存环的主要参数[22]

    Table  1.   Main parameters of the HEPS storage ring[22]

    Energy/
    GeV
    Circumference/
    m
    Number of
    straight sections
    Beam current/
    mA
    Natural emittance/
    pmrad
    InjectionBunch
    number
    61360.44820034.2Top-up680/63
    下载: 导出CSV

    表  2  X射线吸收谱线站的主要设计指标

    Table  2.   Main parameters of XAS beamline

    Energy range/keVEnergy resolution(ΔE/EFlux/(ph·s−1)Spot size /
    (μm × μm)
    Methods
    4.8−452 × 10−4 Si (111)5 × 1013@10 keV (non-focus)0.35 × 0.35 (focus)XAFS/XRD/XRF/FTIR/Mass spectra
    4 × 10−5 Si (311) 5 × 1012@10 keV (focus) 0.35 × 0.35 (focus) Time resolution: 25 ms/spectra
    Detection limit of trace element > 1×10−7
    下载: 导出CSV

    表  3  H2O线站实验方法及技术指标

    Table  3.   Specification of methods at the H2O beamline

    MethodEnergy range/keVEnergy resolution/meVInject modeSpot size/ (μm × μm)Flux/(ph·s−1)
    Nuclear resonant scattering14.4 (57Fe)2,163-bunches2 × 2About 1.5 × 1010
    X-ray Raman scattering10800680-bunches3 × 3About 3 × 1013
    下载: 导出CSV
  • [1] HEMLEY R J. Effects of high pressure on molecules [J]. Annual Review of Physical Chemistry, 2000, 51: 763–800. doi: 10.1146/annurev.physchem.51.1.763
    [2] SHEN G Y, MAO H K. High-pressure studies with x-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 80(1): 016101. doi: 10.1088/1361-6633/80/1/016101
    [3] MAO H K, CHEN X J, DING Y, et al. Solids, liquids, and gases under high pressure [J]. Reviews of Modern Physics, 2018, 90: 015007. doi: 10.1103/RevModPhys.90.015007
    [4] ASHCROFT N W. Condensed-matter physics: pressure for change in metals [J]. Nature, 2009, 458(7235): 158–159. doi: 10.1038/458158a
    [5] MCMILLAN P F. Chemistry at high pressure [J]. Chemical Society Reviews, 2006, 35(10): 855–857. doi: 10.1039/B610410J
    [6] MCMILLAN P F. New materials from high-pressure experiments [J]. Nature Materials, 2002, 1(1): 19–25. doi: 10.1038/nmat716
    [7] MAO H K, HEMLEY R J. The high-pressure dimension in earth and planetary science [J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9114–9115. doi: 10.1073/pnas.0703653104
    [8] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
    [9] JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9: 3563. doi: 10.1038/s41467-018-06071-x
    [10] 徐济安, 毕延. 同步辐射X射线光源在高压科学研究中的应用 [J]. 物理, 2012, 41(4): 218–226.

    XU J A, BI Y. Application of synchrotron radiation X-ray sources in high pressure research [J]. Physics, 2012, 41(4): 218–226.
    [11] LIU J. High pressure X-ray diffraction techniques with synchrotron radiation [J]. Chinese Physics B, 2016, 25(7): 076106. doi: 10.1088/1674-1056/25/7/076106
    [12] 王其武, 刘文汉. X射线吸收精细结构及其应用[M]. 北京: 科学出版社, 1994: 32–35.

    WANG Q W, LIU W H. X-ray absorption fine structure and it’s application [M]. Beijing: Science Press, 1994: 32–35.
    [13] CALVIN S. XAFS for everyone [M]. Boca Raton: Taylor & Francis, 2013: 20–21.
    [14] CHEN J H, DUFFY T S, DOBRZHINETSKAYA L F, et al. Advances in high-pressure technology for geophysical applications [M]. Amsterdam: Elsevier, 2005: 397–411.
    [15] STERNEMANN C, WILKE M. Spectroscopy of low and intermediate Z elements at extreme conditions: in situ studies of earth materials at pressure and temperature via X-ray raman scattering [J]. High Pressure Research, 2016, 36(3): 275–292. doi: 10.1080/08957959.2016.1198903
    [16] 侯琪玥, 敬秋民, 张毅, 等. 基于同步辐射的X射线成像技术在静高压研究中的应用 [J]. 高压物理学报, 2016, 30(6): 537–547. doi: 10.11858/gywlxb.2016.06.016

    HOU Q Y, JING Q M, ZHANG Y, et al. Applications of synchrotron X-ray imaging techniques in high static pressure researches [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537–547. doi: 10.11858/gywlxb.2016.06.016
    [17] HETTEL R. The advanced photon source upgrade plan approved [J]. Synchrotron Radiation News, 2019, 32(2): 34–35. doi: 10.1080/08940886.2019.1582289
    [18] DIMPER R, REICHERT H, RAIMONDI P, et al. ESRF upgrade programme phase Ⅱ (2015 - 2022) technical design study [R]. France: ESRF, 2014.
    [19] TANAKA H, ISHIKAWA T, GOTO S, et al. SPring-8 upgrade project [C]//Proceedings of the 7th International Particle Accelerator Conference. Busan: INSPIRE, 2016: 2867–2870.
    [20] SCHROER C G, AGAPOV I, BREFELD W, et al. PETRA IV: the ultralow-emittance source project at DESY [J]. Journal of Synchrotron Radiation, 2018, 25: 1277–1290. doi: 10.1107/S1600577518008858
    [21] JIAO Y, XU G, CUI X H, et al. The HEPS project [J]. Journal of Synchrotron Radiation, 2018, 25: 1611–1618. doi: 10.1107/S1600577518012110
    [22] TAO Y. Groundbreaking ceremony at the high energy photon source in Beijing [J]. Synchrotron Radiation News, 2019, 32(5): 40. doi: 10.1080/08940886.2019.1654833
    [23] SHEN G, PRAKAPENKA V B, ENG P J, et al. Facilities for high-pressure research with the diamond anvil cell at GSECARS [J]. Journal of Synchrotron Radiation, 2005, 12: 642–649. doi: 10.1107/S0909049505022442
    [24] SHEN G Y, CHOW P, XIAO Y M, et al. HPCAT: an integrated high-pressure synchrotron facility at the advanced photon source [J]. High Pressure Research, 2008, 28(3): 145–162. doi: 10.1080/08957950802208571
    [25] ANDRAULT D, ANTONANGELI D, DMITRIEV V, et al. Science under extreme conditions of pressures and temperatures at the ESRF [J]. Synchrotron Radiation News, 2013, 26(5): 39–44. doi: 10.1080/08940886.2013.832591
    [26] HIRAO N, KAWAGUCHI S I, HIROSE K, et al. New developments in high-pressure X-ray diffraction beamline for diamond anvil cell at SPring-8 [J]. Matter and Radiation at Extremes, 2020, 5(1): 018403. doi: 10.1063/1.5126038
    [27] LIERMANN H P, KONÔPKOVÁ Z, MORGENROTH W, et al. The extreme conditions beamline P02.2 and the extreme conditions science infrastructure at PETRA Ⅲ [J]. Journal of Synchrotron Radiation, 2015, 22: 908–924. doi: 10.1107/S1600577515005937
    [28] XU W. Nuclear resonant scattering program in China: opportunities and challenges at the high energy photon source in Huairou [J]. Mössbauer Effect Reference and Data Journal, 2017, 40: 213–218.
    [29] MAO H K, XU J, STRUZHKIN V V, et al. Phonon density of states of iron up to 153 gigapascals [J]. Science, 2001, 292(5518): 914–916. doi: 10.1126/science.1057670
    [30] LIU J, HU Q Y, KIM D Y, et al. Hydrogen-bearing iron peroxide and the origin of ultralow-velocity zones [J]. Nature, 2017, 551(7681): 494–497. doi: 10.1038/nature24461
    [31] KUPENKO I, APRILIS G, VASIUKOV D M, et al. Magnetism in cold subducting slabs at mantle transition zone depths [J]. Nature, 2019, 570(7759): 102–106. doi: 10.1038/s41586-019-1254-8
    [32] WU J J, LIN J F, WANG X C, et al. Pressure-decoupled magnetic and structural transitions of the parent compound of iron-based 122 superconductors BaFe2As2 [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17263–17266. doi: 10.1073/pnas.1310286110
    [33] TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
    [34] BI W, SOUZA-NETO N M, HASKEL D, et al. Synchrotron x-ray spectroscopy studies of valence and magnetic state in europium metal to extreme pressures [J]. Physical Review B, 2012, 85(20): 205134. doi: 10.1103/PhysRevB.85.205134
    [35] BI W, LIM J, FABBRIS G, et al. Magnetism of europium under extreme pressures [J]. Physical Review B, 2016, 93(18): 184424. doi: 10.1103/PhysRevB.93.184424
    [36] CAI Y Q, MAO H K, CHOW P C, et al. Ordering of hydrogen bonds in high-pressure low-temperature H2O [J]. Physical Review Letters, 2005, 94(2): 025502. doi: 10.1103/PhysRevLett.94.025502
    [37] SHIEH S R, JARRIGE I, WU M, et al. Electronic structure of carbon dioxide under pressure and insights into the molecular-to-nonmolecular transition [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(46): 18402–18406. doi: 10.1073/pnas.1305116110
    [38] LEE S K, KIM Y H, YI Y S, et al. Oxygen quadclusters in SiO2 glass above megabar pressures up to 160 GPa revealed by X-ray Raman scattering [J]. Physical Review Letters, 2019, 123(23): 235701. doi: 10.1103/PhysRevLett.123.235701
    [39] CHEN B J, PARSCHKE E M, CHEN W C, et al. Probing cerium 4f states across the volume collapse transition by X-ray Raman scattering [J]. The Journal of Physical Chemistry Letters, 2019, 10(24): 7890–7897. doi: 10.1021/acs.jpclett.9b02819
    [40] MEIRER F, CABANA J, LIU Y, et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy [J]. Journal of Synchrotron Radiation, 2011, 18(5): 773–781. doi: 10.1107/S0909049511019364
    [41] LIU H Z, WANG L H, XIAO X H, et al. Anomalous high-pressure behavior of amorphous selenium from synchrotron x-ray diffraction and microtomography [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13229–13234. doi: 10.1073/pnas.0806857105
    [42] XIAO X H, LIU H Z, WANG L H, et al. Density measurement of samples under high pressure using synchrotron microtomography and diamond anvil cell techniques [J]. Journal of Synchrotron Radiation, 2010, 17(3): 360–366. doi: 10.1107/S0909049510008502
    [43] WANG J Y, YANG W G, WANG S, et al. High pressure nano-tomography using an iterative method [J]. Journal of Applied Physics, 2012, 111(11): 112626. doi: 10.1063/1.4726249
    [44] LIN Y, ZENG Q S, YANG W G, et al. Pressure-induced densification in GeO2 glass: a transmission x-ray microscopy study [J]. Applied Physics Letters, 2013, 103(26): 261909. doi: 10.1063/1.4860993
    [45] ZENG Q S, KONO Y, LIN Y, et al. Universal fractional noncubic power law for density of metallic glasses [J]. Physical Review Letters, 2014, 112(18): 185502. doi: 10.1103/PhysRevLett.112.185502
    [46] KATAYAMA Y, INAMURA Y, MIZUTANI T, et al. Macroscopic separation of dense fluid phase and liquid phase of phosphorus [J]. Science, 2004, 306(5697): 848–851. doi: 10.1126/science.1102735
    [47] LIU Y J, WANG J Y, AZUMA M, et al. Five-dimensional visualization of phase transition in BiNiO3 under high pressure [J]. Applied Physics Letters, 2014, 104(4): 043108. doi: 10.1063/1.4863229
    [48] ZHU W L, GAETANI G A, FUSSEIS F, et al. Microtomography of partially molten rocks: three-dimensional melt distribution in mantle peridotite [J]. Science, 2011, 332(6025): 88–91. doi: 10.1126/science.1202221
    [49] SHI C Y, ZHANG L, YANG W G, et al. Formation of an interconnected network of iron melt at Earth’s lower mantle conditions [J]. Nature Geoscience, 2013, 6(11): 971–975. doi: 10.1038/ngeo1956
    [50] YUAN Q X, ZHANG K, HUANG W X, et al. Conceptual design of TXM beamline at high energy photon source [J]. AIP Conference Proceedings, 2019, 2054(1): 050002. doi: 10.1063/1.5084620
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  14202
  • HTML全文浏览量:  4088
  • PDF下载量:  135
出版历程
  • 收稿日期:  2020-04-29
  • 修回日期:  2020-05-12
  • 刊出日期:  2020-07-25

目录

    /

    返回文章
    返回