低温下碳酸盐熔体与橄榄石的二面角分布

朱峤 刘汉永 杨晓志

朱峤, 刘汉永, 杨晓志. 低温下碳酸盐熔体与橄榄石的二面角分布[J]. 高压物理学报, 2021, 35(1): 011202. doi: 10.11858/gywlxb.20200553
引用本文: 朱峤, 刘汉永, 杨晓志. 低温下碳酸盐熔体与橄榄石的二面角分布[J]. 高压物理学报, 2021, 35(1): 011202. doi: 10.11858/gywlxb.20200553
ZHU Qiao, LIU Hanyong, YANG Xiaozhi. Dihedral Angle of Carbonatite Melt and Olivine System at Low Temperature[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011202. doi: 10.11858/gywlxb.20200553
Citation: ZHU Qiao, LIU Hanyong, YANG Xiaozhi. Dihedral Angle of Carbonatite Melt and Olivine System at Low Temperature[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 011202. doi: 10.11858/gywlxb.20200553

低温下碳酸盐熔体与橄榄石的二面角分布

doi: 10.11858/gywlxb.20200553
基金项目: 科技部重点研发计划(2018YFA0702704);国家自然科学基金(41590622,41725008)
详细信息
    作者简介:

    朱 峤(1995-),男,硕士研究生,主要从事熔体拓扑分布研究. E-mail:qzhu1995@163.com

    通讯作者:

    杨晓志(1980-),男,博士,教授,主要从事高温高压实验地球科学研究. E-mail:xzyang@nju.edu.cn

  • 中图分类号: P589.1; O521.2

Dihedral Angle of Carbonatite Melt and Olivine System at Low Temperature

  • 摘要: 碳酸盐熔体是地球内部重要的一种流体介质,具有较硅酸盐熔体更强的物理化学活性。上地幔中少量碳酸盐熔体的出现,会显著影响其诸多地球化学和地球物理学性质,如交代元素组成、高电导异常产生等。高温高压下的实验研究是认识熔体物理化学效应的强有力途径。熔体产生的很多物理化学影响与熔体在体系中的几何分布特征有密切关系,而熔体的二面角分布是相关表征中的一个重要参数。关于碳酸盐熔体二面角(和各种物理效应)的研究往往是在超过1 200 ℃的极高温条件下开展的,其潜在的问题是熔体与体系中固态介质间的复杂反应难以避免,且极端高温下的实验难度非常大。为了克服这些问题,选择一种特殊的低熔点碳酸盐混合物作为模拟介质,在不超过700 ℃的低温下对碳酸盐熔体-橄榄石体系的颗粒边界熔体分布进行了实验研究。相关工作使用活塞圆筒压机在1 GPa条件下进行,采用扫描电镜对产物进行了检测。结果表明,产物中熔体均匀分布,颗粒边界熔体的二面角主要分布在10°~40°,其平均值为24°~27°。这意味着这种熔体具有良好的颗粒边界湿润能力,与已有关于碳酸盐熔体二面角分布的极高温实验研究具有良好的一致性。这为探究碳酸盐熔体的地球物理效应提供了一种新的模拟介质。

     

  • 图  高温高压样品组装示意图

    Figure  1.  Sketch for sample-capsule design at high temperature and pressure

    图  真实二面角的表征方法(a)和随机截面中$\psi$$ \theta$的关系(b)示意图

    Figure  2.  Cartoon for the true dihedral angle (a) and the relationship between $\psi$ and $\theta$ in a random profile (b)

    图  样品B的背散射成像

    Figure  3.  Backscattered electron images of sample B

    图  样品A和样品B的二面角统计

    Figure  4.  Measured dihedral angles in sample A and sample B

    图  低温和高温下碳酸盐熔体-橄榄石二面角的实验结果对比

    Figure  5.  Carbonatite-olivine dihedral angle at low and high temperature

    表  1  橄榄石的化学成分

    Table  1.   Composition of starting and recovered olivine % 

    SampleSiO2TiO2Al2O3Cr2O3FeOMnOMgOCaONa2OK2ONiOTotal
    Initial40.350.010.020.019.260.1548.260.070.020.010.4298.56
    Sample A41.610.020.010.028.870.1048.170.050.010.010.3999.25
    Sample B40.800.050.020.028.730.1248.980.060.010.010.3599.14
    下载: 导出CSV
  • [1] HUNTER R H, MCKENZIE D. The equilibrium geometry of carbonate melts in rocks of mantle composition [J]. Earth and Planetary Science Letters, 1989, 92(3/4): 347–356.
    [2] MINARIK W G, WATSON E B. Interconnectivity of carbonate melt at low melt fraction [J]. Earth and Planetary Science Letters, 1995, 133(3/4): 423–437.
    [3] GREEN D H, WALLACE M E. Mantle metasomatism by ephemeral carbonatite melts [J]. Nature, 1988, 336(6198): 459–462. doi: 10.1038/336459a0
    [4] YAXLEY G M, CRAWFORD A J, GREEN D H. Evidence for carbonatite metasomatism in spinel peridotite xenoliths from western Victoria, Australia [J]. Earth and Planetary Science Letters, 1991, 107(2): 305–317. doi: 10.1016/0012-821X(91)90078-V
    [5] HAURI E H, SHIMIZU N, DIEU J J, et al. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle [J]. Nature, 1993, 365(6443): 221–227. doi: 10.1038/365221a0
    [6] RUDNICK R L, MCDONOUGH W F, CHAPPELL B W. Carbonatite metasomatism in the northern Tanzanian mantle: petrographic and geochemical characteristics [J]. Earth and Planetary Science Letters, 1993, 114(4): 463–475. doi: 10.1016/0012-821X(93)90076-L
    [7] HARMER R, GITTINS J. The case for primary, mantle-derived carbonatite magma [J]. Journal of Petrology, 1998, 39(11/12): 1895–1903.
    [8] SMITH D. Genesis of carbonate in pyrope from ultramafic diatremes on the Colorado Plateau, southwestern United States [J]. Contributions to Mineralogy Petrology, 1987, 97(3): 389–396. doi: 10.1007/BF00372001
    [9] BERG G. Evidence for carbonate in the mantle [J]. Nature, 1986, 324(6092): 50–51. doi: 10.1038/324050a0
    [10] LE BAS M J. Nephelinites and carbonatites [J]. Geological Society, London, Special Publications, 1987, 30(1): 53–83. doi: 10.1144/GSL.SP.1987.030.01.05
    [11] DELANEY J R, MUENOW D W, GRAHAM D G. Abundance and distribution of water, carbon and sulfur in the glassy rims of submarine pillow basalts [J]. Geochimica et Cosmochimica Acta, 1978, 42(6): 581–594. doi: 10.1016/0016-7037(78)90003-0
    [12] ANDERSON D L, SAMMIS C. Partial melting in the upper mantle [J]. Physics of the Earth and Planetary Interiors, 1970, 3: 41–50. doi: 10.1016/0031-9201(70)90042-7
    [13] STOCKER R, GORDON R. Velocity and internal friction in partial melts [J]. Journal of Geophysical Research, 1975, 80(35): 4828–4836. doi: 10.1029/JB080i035p04828
    [14] YOSHINO T, MCISAAC E, LAUMONIER M, et al. Electrical conductivity of partial molten carbonate peridotite [J]. Physics of the Earth and Planetary Interiors, 2012, 194/195: 1–9. doi: 10.1016/j.pepi.2012.01.005
    [15] BLUNDY J, DALTON J. Experimental comparison of trace element partitioning between clinopyroxene and melt in carbonate and silicate systems, and implications for mantle metasomatism [J]. Contributions to Mineralogy Petrology, 2000, 139(3): 356–371. doi: 10.1007/s004100000139
    [16] YAXLEY G M, GREEN D H. Experimental reconstruction of sodic dolomitic carbonatite melts from metasomatised lithosphere [J]. Contributions to Mineralogy Petrology, 1996, 124(3/4): 359–369.
    [17] YAXLEY G M, GREEN D H, KAMENETSKY V. Carbonatite metasomatism in the southeastern Australian lithosphere [J]. Journal of Petrology, 1998, 39(11/12): 1917–1930.
    [18] KARATO S I. Does partial melting explain geophysical anomalies? [J]. Physics of the Earth and Planetary Interiors, 2014, 228(3): 300–306.
    [19] WAFF H S, FAUL U H. Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts [J]. Journal of Geophysical Research, 1992, 97(B6): 9003–9014. doi: 10.1029/92JB00066
    [20] SMITH C S. Some elementary principles of polycrystalline microstructure [J]. Metallurgical Reviews, 1964, 9(1): 1–48. doi: 10.1179/mtlr.1964.9.1.1
    [21] VON BARGEN N, WAFF H S. Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B9): 9261–9276. doi: 10.1029/JB091iB09p09261
    [22] WARK D A, WATSON E B. Effect of grain size on the distribution and transport of deep-seated fluids and melts [J]. Geophysical Research Letters, 2000, 27(14): 2029–2032. doi: 10.1029/2000GL011503
    [23] OLIVARES R I, CHEN C, WRIGHT S. The thermal stability of molten lithium-sodium-potassium carbonate and the influence of additives on the melting point [J]. Journal of Solar Energy Engineering, 2012, 134(4): 041002. doi: 10.1115/1.4006895
    [24] LAUMONIER M, FARLA R, FROST D J, et al. Experimental determination of melt interconnectivity and electrical conductivity in the upper mantle [J]. Earth and Planetary Science Letters, 2017, 463: 286–297. doi: 10.1016/j.jpgl.2017.01.037
    [25] LAPORTE D, PROVOST A. The grain-scale distribution of silicate, carbonate and metallosulfide partial melts: a review of theory and experiments [C]//BAGDASSAROV N, LAPORTE D, THOMPSON A B. Physics and Chemistry of Partially Molten Rocks. Dordrecht: Springer, 2000: 93–140.
    [26] BULAU J, WAFF H, TYBURCZY J. Mechanical and thermodynamic constraints on fluid distribution in partial melts [J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B11): 6102–6108. doi: 10.1029/JB084iB11p06102
    [27] MAUMUS J M, LAPORTE D, SCHIANO P. Dihedral angle measurements and infiltration property of SiO2-rich melts in mantle peridotite assemblages [J]. Contributions to Mineralogy Petrology, 2004, 148(1): 1–12. doi: 10.1007/s00410-004-0595-x
    [28] RIEGGER O K, VAN VLACK L H. Dihedral angle measurements [J]. Transactions of the Metallurgical Society of AIME, 1960, 218: 933–935.
    [29] YOSHINO T, MIBE K, YASUDA A, et al. Wetting properties of anorthite aggregates: implications for fluid connectivity in continental lower crust [J]. Journal of Geophysical Research Solid Earth, 2002, 107(B1): ECV 10. doi: 10.1029/2001JB000440
    [30] WATSON E B, BRENAN J M, BAKER D R. Distribution of fluids in the continental mantle [C]//MENZIES M A. Continental Mantle. Oxford: Oxford University Press,1990: 111–125.
    [31] GAILLARD F, MALKI M, IACONO-MARZIANO G, et al. Carbonatite melts and electrical conductivity in the asthenosphere [J]. Science, 2008, 322(5906): 1363–1365. doi: 10.1126/science.1164446
    [32] YOSHINO T, LAUMONIER M, MCISAAC E, et al. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: implications for melt distribution and melt fraction in the upper mantle [J]. Earth and Planetary Science Letters, 2010, 295(3/4): 593–602.
    [33] HAMMOUDA T, LAPORTE D. Ultrafast mantle impregnation by carbonatite melts [J]. Geology, 2000, 28(3): 283–285. doi: 10.1130/0091-7613(2000)28<283:UMIBCM>2.0.CO;2
    [34] DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide [J]. Nature, 2006, 440(7084): 659–662. doi: 10.1038/nature04612
    [35] DOBSON D P, JONES A P, RABE R, et al. In-situ measurement of viscosity and density of carbonate melts at high pressure [J]. Earth and Planetary Science Letters, 1996, 143(1/2/3/4): 207–215.
    [36] GENGE M J, PRICE G D, JONES A P J E, et al. Molecular dynamics simulations of CaCO3 melts to mantle pressures and temperatures: implications for carbonatite magmas [J]. Earth and Planetary Science Letters, 1995, 131(3/4): 225–238.
    [37] LIU Q, LANGE R A. New density measurements on carbonate liquids and the partial molar volume of the CaCO3 component [J]. Contributions to Mineralogy Petrology, 2003, 146(3): 370–381. doi: 10.1007/s00410-003-0505-7
    [38] TREIMAN A H, SCHEDL A. Properties of carbonatite magma and processes in carbonatite magma chambers [J]. The Journal of Geology, 1983, 91(4): 437–447. doi: 10.1086/628789
    [39] GREEN T, ADAM J, SIEL S. Trace element partitioning between silicate minerals and carbonatite at 25 kbar and application to mantle metasomatism [J]. Mineralogy and Petrology, 1992, 46(3): 179–184. doi: 10.1007/BF01164645
    [40] WOLFF J. Physical properties of carbonatite magmas inferred from molten salt data, and application to extraction patterns from carbonatite–silicate magma chambers [J]. Geological Magazine, 1994, 131(2): 145–153. doi: 10.1017/S0016756800010682
    [41] PRESNALL C, GUDFINNSSON G H. Carbonate-rich melts in the oceanic low-velocity zone and deep mantle [J]. Geological Society of America, 2005, 388: 207–216.
    [42] KEPPLER H. Water solubility in carbonatite melts [J]. American Mineralogist, 2003, 88(11/12): 1822–1824.
    [43] LITASOV K D, SHATSKIY A, OHTANI E, et al. Solidus of alkaline carbonatite in the deep mantle [J]. Geology, 2013, 41(1): 79–82. doi: 10.1130/G33488.1
    [44] RABINOWICZ M, RICARD Y, GREGOIRE M. Compaction in a mantle with a very small melt concentration: implications for the generation of carbonatitic and carbonate-bearing high alkaline mafic melt impregnations [J]. Earth and Planetary Science Letters, 2002, 203(1): 205–220. doi: 10.1016/S0012-821X(02)00836-1
    [45] MOINE B, GREGOIRE M, O’REILLY S Y, et al. Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago [J]. Lithos, 2004, 75(1/2): 239–252. doi: 10.1016/j.lithos.2003.12.019
    [46] FREZZOTTI M L, ANDERSEN T, NEUMANN E R, et al. Carbonatite melt–CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid–rock interaction in the upper mantle [J]. Lithos, 2002, 64(3/4): 77–96.
    [47] SOKOL A G, KRUK A N, CHEBOTAREV D A, et al. Carbonatite melt–peridotite interaction at 5.5–7.0 GPa: implications for metasomatism in lithospheric mantle [J]. Lithos, 2016, 248/251: 66–79. doi: 10.1016/j.lithos.2016.01.013
    [48] KOGARKO L, HENDERSON C, PACHECO H. Primary Ca-rich carbonatite magma and carbonate-silicate-sulphide liquid immiscibility in the upper mantle [J]. Contributions to Mineralogy Petrology, 1995, 121(3): 267–274. doi: 10.1007/BF02688242
    [49] BAILEY D. Carbonate melt from the mantle in the volcanoes of south-east Zambia [J]. Nature, 1989, 338(6214): 415–418. doi: 10.1038/338415a0
    [50] MCKENIZE D. The extraction of magma from the crust and mantle [J]. Earth and Planetary Science Letters, 1985, 74: 81–91. doi: 10.1016/0012-821X(85)90168-2
    [51] GUEGUEN Y, MERCIER J. High attenuation and the low-velocity zone [J]. Physics of the Earth Planetary Interiors, 1973, 7(1): 39–46. doi: 10.1016/0031-9201(73)90038-1
    [52] EVANS R L, HIRTH G, BABA K, et al. Geophysical evidence from the MELT area for compositional controls on oceanic plates [J]. Nature, 2005, 437(7056): 249–252. doi: 10.1038/nature04014
    [53] NAIF S, KEY K, CONSTABLE S, et al. Melt-rich channel observed at the lithosphere–asthenosphere boundary [J]. Nature, 2013, 495(7441): 356–359. doi: 10.1038/nature11939
    [54] SHANKLAND T J, WAFF H S. Partial melting and electrical conductivity anomalies in the upper mantle [J]. Journal of Geophysical Research, 1977, 82(33): 5409–5417. doi: 10.1029/JB082i033p05409
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  4723
  • HTML全文浏览量:  2151
  • PDF下载量:  47
出版历程
  • 收稿日期:  2020-04-25
  • 修回日期:  2020-05-15
  • 发布日期:  2020-09-25

目录

    /

    返回文章
    返回