Energy Consumption of Composite Double-Layer Targets against Spherical Fragment Penetration
-
摘要: 为了研究影响叠合双层靶抗弹性能的因素,在靶板总厚度为7.2 mm的条件下,采用直径为9.5 mm、质量为8.05 g的钨合金球形破片侵彻单层和不同组合方式的叠合双层Q235钢靶板。弹道极限试验结果表明:(3.6 + 3.6) mm靶板最高,(5.4 + 1.8) mm靶板次之,(1.8 + 5.4) mm靶板最低,单层7.2 mm靶板与(5.4 + 1.8) mm叠合靶基本相同。研究发现,叠合靶排列方式不同,则其破坏模式与耗能模式不同。当双层靶板均产生冲塞破坏时,压缩耗能和凹陷耗能是影响靶板抗弹性能的主要因素;当前靶板为冲塞破坏、后靶板为扩孔破坏时,凹陷耗能是影响靶板抗弹性能的主要因素。通过对多种组合靶的能耗计算表明,(3.6 + 3.6) mm的排列是本研究条件下的最优组合。这些研究结果对防护装置的设计有重要的参考价值。Abstract: In order to study the factors affecting the anti-elastic energy of the composite double-layer targets, a tungsten alloy spherical fragment with a diameter of 9.5 mm and a mass of 8.05 g was used to penetrate the single layer and the superimposed double Q235 targets with different combinations, which were kept 7.2 mm in total thickness. The experimental results show that the ballistic limit of (3.6 + 3.6) mm targets is the highest, followed by (5.4 + 1.8) mm targets, and (1.8 + 5.4) mm targets, which is the lowest. The ballistic limit of the penetration monolayer 7.2 mm target is basically the same as that of the (5.4 + 1.8) mm superimposed target. It is also found that the failure and energy consumption modes of superimposed targets vary with different arrangements. When both the two layers of the targets produce slug failure, the compression and sag energy dissipations together affect the elastic energy of the targets. However, when the current target is punch failure and the rear target reaming failure, only the sag energy dissipation is the main factor affecting its elastic energy. According to the energy consumption calculation of multiple combination targets, the arrangement of (3.6 + 3.6) mm turns to be the optimal combination under the conditions of this study. The results are of great reference value to the design of protective device.
-
Key words:
- penetration /
- double-layered targets /
- energy consumption /
- critical penetration velocity
-
表 1 钨球侵彻7.2 mm和(3.6 + 3.6) mm Q235钢靶试验数据
Table 1. Test data of 7.2 mm and (3.6 + 3.6) mm Q235 steel penetrated by tungsten alloy fragments
No. h/mm v0/(m·s–1) v1/(m·s–1) Results No. (h1+h2)/mm v0/(m·s–1) v1/(m·s–1) Results 1-1 7.2 837.0 558.9 Pennetration 2-1 3.6 + 3.6 652.5 395.5 Pennetration 1-2 7.2 787.3 504.9 Pennetration 2-2 3.6 + 3.6 631.4 344.1 Pennetration 1-3 7.2 718.5 413.3 Pennetration 2-3 3.6 + 3.6 619.0 310.8 Pennetration 1-4 7.2 653.5 287.0 Pennetration 2-4 3.6 + 3.6 604.0 266.2 Pennetration 1-5 7.2 570.1 240.5 Pennetration 2-5 3.6 + 3.6 579.2 172.3 Pennetration 1-6 7.2 552.5 152.4 Pennetration 2-6 3.6 + 3.6 565.1 94.6 Pennetration 1-7 7.2 532.5 79.5 Pennetration 2-7 3.6 + 3.6 561.8 62.1 Pennetration 1-8 7.2 494.3 No pennetration 2-8 3.6 + 3.6 532.7 No pennetration 表 2 钨球侵彻(5.4 + 1.8) mm和(1.8 + 5.4) mm Q235钢靶试验数据
Table 2. Test data of (5.4 + 1.8) mm and (1.8 + 5.4) mm Q235 steel penetrated by tungsten alloy fragments
No. (h1+h2)/mm v0/(m·s–1) v1/(m·s–1) Results No. (h1+h2)/mm v0/(m·s–1) v1/(m·s–1) Results 3-1 5.4 + 1.8 601.9 301.2 Pennetration 4-1 1.8 + 5.4 602.5 269.1 Pennetration 3-2 5.4 + 1.8 577.6 216.0 Pennetration 4-2 1.8 + 5.4 555.7 181.3 Pennetration 3-3 5.4 + 1.8 553.4 189.5 Pennetration 4-3 1.8 + 5.4 526.3 133.1 Pennetration 3-4 5.4 + 1.8 542.6 150.0 Pennetration 4-4 1.8 + 5.4 507.7 106.6 Pennetration 3-5 5.4 + 1.8 529.3 86.5 Pennetration 4-5 1.8 + 5.4 503.9 74.2 Pennetration 3-6 5.4 + 1.8 524.3 50.1 Pennetration 4-6 1.8 + 5.4 499.5 53.4 Pennetration 3-7 5.4 + 1.8 472.3 No pennetration 表 3 不同排列方式靶板着靶速度与后靶板凹陷变形的关系
Table 3. Relationship between the hit speed and pitting deformation of the targets in different arrangements
(h1 + h2)/mm v/(m·s–1) d/mm (h1 + h2)/mm v/(m·s–1) d/mm (h1 + h2)/mm v/(m·s–1) d/mm 5.4 + 1.8 601.9 7.47 1.8 + 5.4 602.5 7.03 3.6 + 3.6 652.5 10.09 577.6 10.93 555.7 7.23 631.4 10.35 553.4 14.04 526.3 7.31 619.0 10.67 542.6 15.33 507.7 7.41 604.0 11.02 529.3 16.84 503.9 7.42 594.0 11.37 524.3 17.39 499.5 7.43 565.1 12.82 561.8 13.06 Material $\;\rho $/(g·cm–3) E/GPa c/(m·s–1) $\sigma $y/MPa D P Tungsten alloy 17.90 417 4831 Q235 steel 7.85 214 5221 320.5 305.8 2.7515 表 5 试验结果和计算结果比较
Table 5. Comparison of the test and calculation results
(h1+h2)/mm E2/J E3/J E4/J E5/J Et/J δ/% Calculation Experiment 5.4 + 1.8 336.2 269.6 54.4 386.3 1046.5 1095.9 –4.5 1.8 + 5.4 435.7 296.2 209.4 941.3 984.6 –4.4 3.6 + 3.6 564.4 244.1 439.7 1249.2 1259.5 –0.8 表 6 试验结果和计算结果比较
Table 6. Comparison of the test and calculation results
(h1+h2)/mm v50/(m·s–1) $\delta $/% Calculation Experiment 5.4 + 1.8 509.9 521.8 –2.3 1.8 + 5.4 483.6 494.6 –2.2 3.6 + 3.6 557.1 559.4 –0.4 表 7 不同排列方式的靶板耗能
Table 7. Targets energy dissipation in different arrangement
(h1+h2)/mm E2/J E3/J E4/J E5/J Et/J 1.0 + 6.2 289.8 360.2 145.6 895.6 1.4 + 5.8 398.8 325.1 195.7 919.6 1.8 + 5.4 435.7 296.2 209.4 941.3 2.0 + 5.2 447.9 283.4 238.7 970.0 3.0 + 4.2 462.8 247.9 378.5 1089.2 3.2 + 4.0 473.6 247.1 397.6 1118.3 3.4 + 3.8 488.4 244.8 436.6 1169.8 3.6 + 3.6 564.4 244.1 439.7 1249.2 3.8 + 3.4 493.4 244.8 432.4 1170.6 4.0 + 3.2 487.2 247.1 419.9 1154.2 4.2 + 3.0 480.3 250.8 405.0 1136.1 5.2 + 2.0 341.7 249.8 60.4 409.0 1060.9 5.4 + 1.8 336.2 269.6 54.4 386.3 1046.5 5.8 + 1.4 339.5 310.7 42.3 341.3 1033.8 6.2 + 1.0 318.0 355.1 30.2 272.2 975.5 -
[1] 蒋志刚, 曾首义, 周建平. 刚性尖头弹侵彻贯穿金属薄靶板耗能分析 [J]. 兵工学报, 2004, 25(6): 777–781. doi: 10.3321/j.issn:1000-1093.2004.06.028JIANG Z G, ZENG S Y, ZHOU J P. Analysis on energy dissipation of thin metallic plates struck by rigid sharp-nosed projectiles [J]. Acta Armamentarii, 2004, 25(6): 777–781. doi: 10.3321/j.issn:1000-1093.2004.06.028 [2] 宋殿义, 蒋志刚, 曾首义. 刚性尖头弹垂直撞击金属靶板耗能分析 [J]. 弹道学报, 2005, 17(2): 28–32. doi: 10.3969/j.issn.1004-499X.2005.02.006SONG D Y, JIANG Z G, ZENG S Y. Analysis on energy absorption of metallic targets struck by rigid sharp-nosed projectiles [J]. Journal of Ballistics, 2005, 17(2): 28–32. doi: 10.3969/j.issn.1004-499X.2005.02.006 [3] 贾光辉, 张国伟, 裴思行. 钨球侵彻薄靶板的实验研究 [J]. 兵工学报, 1998, 19(2): 185–188.JIA G H, ZHANG G W, PEI S X. Experiment study on tungsten spheres penetrate thin target [J]. Acta Armamentarii, 1998, 19(2): 185–188. [4] 陈小伟, 张方举, 梁斌, 等. A3钢钝头弹撞击45钢板破坏模式的试验研究 [J]. 爆炸与冲击, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002CHEN X W, ZHANG F J, LIANG B, et al. Three modes of penetration mechanics of A3 steel cylindrical projectiles impact onto 45 steel plates [J]. Explosion and Shock waves, 2006, 26(3): 199–207. doi: 10.3321/j.issn:1001-1455.2006.03.002 [5] LIANG C C, YANG M F, WU P W, et al. Resistant performance of perforation of multi-layered targets using an estimation procedure with marine application [J]. Ocean Engineering, 2005, 32(3/4): 441–468. [6] 任善良, 文鹤鸣, 周琳. 平头弹穿透接触式双层金属板的理论研究 [J]. 高压物理学报, 2018, 32(3): 035103.REN S L, WEN H M, ZHOU L. Theoretical study of the perforation of double-layered metal targets without spacing struck by flat-ended projectiles [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035103. [7] 肖毅华, 董晃晃, 周建民. 平头弹正侵彻单层和多层钢靶的SPH模拟和解析分析 [J]. 振动与冲击, 2018, 37(19): 166–173, 210.XIAO Y H, DONG H H, ZHOU J M. SPH simulation and analytical analysis for blunt projectiles normally penetrating into mono-layer and multi-layer steel targets [J]. Journal of Vibration and Shock, 2018, 37(19): 166–173, 210. [8] CORRAN R S J, SHADBOLT P J, RUIZ C. Impact loading of plates: an experimental investigation [J]. International Journal of Impact Engineering, 1983, 1(1): 3–22. doi: 10.1016/0734-743X(83)90010-6 [9] 邓云飞, 张伟, 曹宗胜, 等. 叠层顺序对双层A3钢薄板抗侵彻性能的影响 [J]. 爆炸与冲击, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007DENG Y F, ZHANG W, CAO Z S, et al. Influences of layer order on ballistic resistance of double-layered thin A3 steel plates [J]. Explosion and Shock Waves, 2013, 33(3): 263–268. doi: 10.3969/j.issn.1001-1455.2013.03.007 [10] GUPTA N K, IQBAL M A, SEKHON G S. Effect of projectile nose shape, impact velocity and target thickness on the deformation behavior of layered plates [J]. International Journal of Impact Engineering, 2006, 35(1): 37–60. [11] DEY S, BORVIK T, TENG X, et al. On the ballistic resistance of double-layered steel plates: an experimental and numerical investigation [J]. International Journal of Solids and Structures, 2007, 44(20): 6701–6723. doi: 10.1016/j.ijsolstr.2007.03.005 [12] 郑超, 朱秀荣, 辛海鹰, 等. 厚度和层间界面对Ti6Al4V钛合金抗弹性能的影响 [J]. 稀有金属材料与工程, 2019, 48(1): 242–248.ZHENG C, ZHU X R, XIN H Y, et al. Effects of target thickness and macroscopic interface on the ballistic performance of Ti6Al4V titanium alloy [J]. Rare Metal Materials and Engineering, 2019, 48(1): 242–248. [13] 赵国志. 穿甲工程力学 [M]. 北京: 兵器工业出版社, 1992: 64–65.ZHAO G Z. Penetration engineering mechanics [M]. Beijing: Ordnance Industry Press, 1992: 64–65. [14] 郭伟国, 李玉龙, 索涛. 应力波基础简明教程 [M]. 西安: 西北工业大学出版社, 2007: 7–8.GUO W G, LI Y L, SUO T. Concise course on stress wave [M]. Xi’an: Northwestern Polytechnical University Press, 2007: 7–8. [15] 马晓青, 韩峰. 高速碰撞动力学 [M]. 北京: 国防工业出版社, 1998: 240–244.MA X Q, HAN F. High speed collision dynamics [M]. Beijing: National Defense Industry Press, 1998: 240–244. [16] 周楠, 王金相, 谢君, 等. 球形弹丸作用下钢/铝爆炸复合靶的抗侵彻性能计算与分析 [J]. 高压物理学报, 2013, 27(6): 839–846. doi: 10.11858/gywlxb.2013.06.008ZHOU N, WANG J X, XIE J, et al. Calculation and analysis for the anti-penetration performance of explosively welded steel/aluminum plates target by the penetration of spherical projectile [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 839–846. doi: 10.11858/gywlxb.2013.06.008 [17] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceeding of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983: 541–547. [18] COWPER G R, SYMONDS P S. Strain-hardening and strain-rate effects in the impact loading of cantilever beams [R]. Providence: Brown University, 1957. [19] 余同希, 薛璞. 工程塑性力学 [M]. 北京: 高等教育出版社, 2010: 233–236.YU T X, XUE P. Plasticity in engineering [M]. Beijing: Higher Education Press, 2010: 233–236. [20] 丁发兴, 余志武, 温海林. 高温后Q235钢材力学性能试验研究 [J]. 建筑材料学报, 2006, 9(2): 245–249. doi: 10.3969/j.issn.1007-9629.2006.02.022DING F X, YU Z W, WEN H L. Experimental research on mechanical properties of Q235 steel after high temperature treatment [J]. Journal of Building Materials, 2006, 9(2): 245–249. doi: 10.3969/j.issn.1007-9629.2006.02.022 [21] 张修路, 罗雰, 郭志成, 等. 高压下钨弹性和热力学性质的第一性原理研究 [J]. 原子与分子物理学报, 2015, 32(3): 512–518. doi: 10.3969/j.issn.1000-0364.2015.03.028ZHANG X L, LUO F, GUO Z C, et al. Ab initio calculation of elastic and thermodynamic properties of W under high pressure [J]. Journal of Atomic and Molecular Physics, 2015, 32(3): 512–518. doi: 10.3969/j.issn.1000-0364.2015.03.028 [22] 陈俊岭, 舒文雅, 李金威. Q235钢材在不同应变率下力学性能的试验研究 [J]. 同济大学学报(自然科学版), 2016, 44(7): 1071–1075. doi: 10.11908/j.issn.0253-374x.2016.07.014CHEN J L, SHU W Y, LI J W. Experimental study on dynamic mechanical property of Q235 steel at different strain rates [J]. Journal of Tongji University (Natural Science), 2016, 44(7): 1071–1075. doi: 10.11908/j.issn.0253-374x.2016.07.014 [23] 王若林. 钢结构原理 [M]. 南京: 东南大学出版社, 2016: 37–38.WANG R L. Principles of steel structure [M]. Nanjing: Southeast University Press, 2016: 37–38.