孔洞排布对PMMA多孔材料冲击响应行为的影响

罗国强 费细欢 喻寅 张睿智 张成成 沈强

罗国强, 费细欢, 喻寅, 张睿智, 张成成, 沈强. 孔洞排布对PMMA多孔材料冲击响应行为的影响[J]. 高压物理学报, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542
引用本文: 罗国强, 费细欢, 喻寅, 张睿智, 张成成, 沈强. 孔洞排布对PMMA多孔材料冲击响应行为的影响[J]. 高压物理学报, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542
LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542
Citation: LUO Guoqiang, FEI Xihuan, YU Yin, ZHANG Ruizhi, ZHANG Chengcheng, SHEN Qiang. Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054202. doi: 10.11858/gywlxb.20200542

孔洞排布对PMMA多孔材料冲击响应行为的影响

doi: 10.11858/gywlxb.20200542
基金项目: 国家自然科学基金重点项目(51932006);湖北省技术创新专项重大项目(2019AFA176)
详细信息
    作者简介:

    罗国强(1980-),男,博士,教授,主要从事先进复合材料研究. E-mail:luogq@whut.edu.cn

    通讯作者:

    喻 寅(1986-),男,博士,副研究员,主要从事爆炸冲击模拟研究. E-mail:yuyun86@caep.cn

  • 中图分类号: O347.5

Effect of Voids Arrangement on Behavior of PMMA Cellular Materials on Impact Loading

  • 摘要: 多孔材料具有轻质、缓冲减震、吸能等特点,在加载路径调控、爆炸或冲击防护领域具有广泛的应用前景。采用格点-弹簧模型(离散元方法),模拟多种孔洞排布方式的PMMA多孔材料在冲击加载过程中的早期孔洞塌缩破坏、应力分布与粒子速度等冲击响应行为。结果表明:在冲击加载过程中,裂纹萌发于孔洞侧向(垂直于冲击波方向)附近区域,孔洞破坏形式以剪切断裂为主;在不同的孔洞排列模型中,孔洞与孔洞之间均存在剪切裂纹相互贯通现象,促进孔洞体积压缩致密化,且孔洞排列方式不影响冲击波传播速度;四角点阵模型有效减缓孔洞附近区域的应力集中;四角点阵、三角点阵、锥形递减排列、锥形递增排列模型都显著影响PMMA多孔材料的冲击波阵面平整性;孔洞的随机排列模型对降低粒子速度最有效,四角点阵排列模型对降低波阵面后压力贡献最大。

     

  • 图  相邻两颗粒间的相互作用示意图

    Figure  1.  Schematic of the interaction between adjacent particles

    图  基于格点-弹簧模型的冲击压缩构型

    Figure  2.  Configuration of the shock compression model based on the lattice-spring model

    图  多孔材料的孔洞排列模型

    Figure  3.  Arrangement modes of voids of the cellular materials

    图  不同时刻下5种孔洞排列模型的裂纹扩展

    Figure  4.  Crack growth patterns of five arrangement models of voids at various times

    图  孔洞附近区域剪切裂纹(a)和颗粒破碎填充孔洞示意图(b)

    Figure  5.  Shear cracks in the area around the void (a) and schematic of particle-fragmentation-filled void (b)

    图  不同时刻5种孔洞排列模型的应力分布云图

    Figure  6.  Stress distributions of five arrangement models of voids at various times

    图  5种孔洞排列模型的粒子速度剖面

    Figure  7.  Particle velocity profiles of voids for five arrangement modes

    表  1  模型各部分材料的物性参数

    Table  1.   Specific physical parameters of each part of the model

    MaterialR/μm$\delta $/μmE/GPa$\;\mu$$\;\rho$/(kg·m−3)$\gamma $/(J·m−2)
    Cu2001100.258 96050 000
    PMMA1020030.201 18010
    LiF200650.102 640
    下载: 导出CSV

    表  2  5种孔洞排列模型中的粒子速度与波阵面后应力

    Table  2.   Particle velocities and stresses in the five arrangements modes of void

    ModesParticle velocity/(m·s−1)Stress/MPa
    Random lattice142.656.11
    Square lattice155.029.74
    Triangular lattice151.562.84
    Decreasing lattice161.758.13
    Increasing lattice158.955.39
    下载: 导出CSV
  • [1] HU L L, YU T X. Dynamic crushing strength of hexagonal honeycombs [J]. International Journal of Impact Engineering, 2010, 37(5): 467–474. doi: 10.1016/j.ijimpeng.2009.12.001
    [2] SUN Y L, LI Q M. Dynamic compressive behaviour of cellular materials: a review of phenomenon, mechanism and modelling [J]. International Journal of Impact Engineering, 2018, 112: 74–115. doi: 10.1016/j.ijimpeng.2017.10.006
    [3] DUAN Y, ZHAO X H, LIU Z Y, et al. Dynamic response of additively manufactured graded foams [J]. Composites Part B: Engineering, 2020, 183: 107630. doi: 10.1016/j.compositesb.2019.107630
    [4] STAPF S. Porous materials: how molecules huddle in holes [J]. Nature Physics, 2006, 2(11): 731–732. doi: 10.1038/nphys441
    [5] GUILLARD F, GOLSHAN P, SHEN L M, et al. Dynamic patterns of compaction in brittle porousmedia [J]. Nature Physics, 2015, 11(10): 835–838. doi: 10.1038/nphys3424
    [6] 许爱国, 张广财, 蔚喜军, 等. 冲击作用下多孔材料热力学特征的模拟与分析 [J]. 中国工程科学, 2009, 11(9): 13–19. doi: 10.3969/j.issn.1009-1742.2009.09.003

    XU A G, ZHANG G C, YU X J, et al. Simulation study of shock wave reaction on porous material [J]. Engineering Sciences, 2009, 11(9): 13–19. doi: 10.3969/j.issn.1009-1742.2009.09.003
    [7] SETCHELL R E. Shock wave compression of the ferroelectric ceramic Pb0.99(Zr0.95Ti0.05)0.98Nb0.02O3: microstructural effects [J]. Journal of Applied Physics, 2007, 101(5): 053525. doi: 10.1063/1.2697428
    [8] BRANCH B, IONITA A, PATTERSON B M, et al. A comparison of shockwave dynamics in stochastic and periodic porous polymer architectures [J]. Polymer, 2019, 160: 325–337. doi: 10.1016/j.polymer.2018.10.074
    [9] BRANCH B, IONITA A, CLEMENTS B E, et al. Controlling shockwave dynamics using architecture in periodic porous materials [J]. Journal of Applied Physics, 2017, 121(13): 135102. doi: 10.1063/1.4978910
    [10] LIU Y, ZHANG X C. The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs [J]. International Journal of Impact Engineering, 2009, 36(1): 98–109. doi: 10.1016/j.ijimpeng.2008.03.001
    [11] ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650–664. doi: 10.1016/j.ijimpeng.2005.05.007
    [12] ZHAO F P, WU H A, LUO S N. Microstructure effects on shock response of Cu nanofoams [J]. Journal of Applied Physics, 2013, 114(7): 073501. doi: 10.1063/1.4818487
    [13] HERRING S D, GERMANN T C, GRØNBECH-JENSEN N. Effects of void size, density, and arrangement on deflagration and detonation sensitivity of a reactive empirical bond order high explosive [J]. Physical Review B, 2010, 82(21): 214108. doi: 10.1103/PhysRevB.82.214108
    [14] 姜太龙, 喻寅, 宦强, 等. 设计脆性材料的冲击塑性 [J]. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301

    JIANG T L, YU Y, HUAN Q, et al. Shock plasticity design of brittle material [J]. Acta Physica Sinica, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [15] 黄海军, 沈强, 罗国强, 等. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析 [C]//第四届全国爆炸力学实验技术学术会议论文集. 武夷山: 中国力学学会, 2006.
    [16] 杜艾, 周斌, 沈洋, 等. 激光准等熵压缩实验中阻抗梯度飞片的制备技术简介 [J]. 原子能科学技术, 2014, 48(11): 2158–2164. doi: 10.7538/yzk.2014.48.11.2158

    DU A, ZHOU B, SHEN Y, et al. Brief introduction of fabrication technique for flier-plate with gradient wave impedance in laser-induced quasi-isentropic compression [J]. Atomic Energy Science and Technology, 2014, 48(11): 2158–2164. doi: 10.7538/yzk.2014.48.11.2158
    [17] 朱婷. 基于ABAQUS软件的PMMA材料裂纹及其扩展研究 [D]. 长沙: 湖南大学, 2016: 2–3.

    ZHU T. Research on crack and propagation of PMMA material based on ABAQUS [D]. Changsha: Hunan University, 2016: 2–3.
    [18] 喻寅, 李媛媛, 贺红亮, 等. 脆性材料动态断裂的介观格子模型 [J]. 高压物理学报, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707

    YU Y, LI Y Y, HE H L, et al. Mesoscale lattice model for dynamic fracture of brittle materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030106. doi: 10.11858/gywlxb.20190707
    [19] YU Y, WANG W Q, CHEN K G, et al. Controllable fracture in shocked ceramics: shielding one region from severely fractured state with the sacrifice of another region [J]. International Journal of Solids and Structures, 2018, 135: 137–147. doi: 10.1016/j.ijsolstr.2017.11.016
    [20] SULSKY D, ZHOU S J, SCHREYER H L. Application of a particle-in-cell method to solid mechanics [J]. Computer Physics Communications, 1995, 87(1/2): 236–252. doi: 10.1016/0010-4655(94)00170-7
    [21] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175–209. doi: 10.1016/S0022-5096(99)00029-0
    [22] GUSEV A A. Finite element mapping for spring network representations of the mechanics of solids [J]. Physical Review Letters, 2004, 93(3): 034302. doi: 10.1103/PhysRevLett.93.034302
    [23] YU Y, WANG W Q, HE H L, et al. Mesoscopic deformation features of shocked porous ceramic: polycrystalline modeling and experimental observations [J]. Journal of Applied Physics, 2015, 117(12): 125901. doi: 10.1063/1.4916244
    [24] LAWN B. 脆性固体断裂力学 [M]. 龚江宏, 译. 2版. 北京: 高等教育出版社, 2010: 4–5.
    [25] PHILLIPS D C, TETELMAN A S. The fracture toughness of fibre composites [J]. Composites, 1972, 3(5): 216–223. doi: 10.1016/0010-4361(72)90630-1
    [26] 喻寅, 王文强, 杨佳, 等. 多孔脆性介质冲击波压缩破坏的细观机理和图像 [J]. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103

    YU Y, WANG W Q, YANG J, et al. Mesoscopic picture of fracture in porous brittle material under shock wave compression [J]. Acta Physica Sinica, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [27] 谭华. 实验冲击波物理 [M]. 2版. 北京: 国防工业出版社, 2018: 67–68.
    [28] 徐之纶. 弹性力学简明教程 [M]. 3版. 北京: 高等教育出版社, 2002: 145–147.
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  7542
  • HTML全文浏览量:  2970
  • PDF下载量:  32
出版历程
  • 收稿日期:  2020-04-10
  • 修回日期:  2020-05-04

目录

    /

    返回文章
    返回