双模成型装药战斗部药型罩结构的正交设计

王彦盛 李伟兵 黄炫宁 王晓鸣

王彦盛, 李伟兵, 黄炫宁, 王晓鸣. 双模成型装药战斗部药型罩结构的正交设计[J]. 高压物理学报, 2020, 34(4): 045102. doi: 10.11858/gywlxb.20200537
引用本文: 王彦盛, 李伟兵, 黄炫宁, 王晓鸣. 双模成型装药战斗部药型罩结构的正交设计[J]. 高压物理学报, 2020, 34(4): 045102. doi: 10.11858/gywlxb.20200537
WANG Yansheng, LI Weibing, HUANG Xuanning, WANG Xiaoming. Orthogonal Design of the Liner Structure in Dual-Mode Charge Warhead[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045102. doi: 10.11858/gywlxb.20200537
Citation: WANG Yansheng, LI Weibing, HUANG Xuanning, WANG Xiaoming. Orthogonal Design of the Liner Structure in Dual-Mode Charge Warhead[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045102. doi: 10.11858/gywlxb.20200537

双模成型装药战斗部药型罩结构的正交设计

doi: 10.11858/gywlxb.20200537
基金项目: 国家自然科学基金(11972018);装备预研兵器工业联合基金(6141B012858)
详细信息
    作者简介:

    王彦盛(1998-),男,本科,主要从事弹药研究. E-mail:514270553@qq.com

    通讯作者:

    李伟兵(1982-),男,博士,副研究员,博士生导师,主要从事终点效应与目标毁伤技术研究. E-mail: njustlwb@163.com

  • 中图分类号: O385; TJ410.33

Orthogonal Design of the Liner Structure in Dual-Mode Charge Warhead

  • 摘要: 针对双模战斗部小型化设计及其应用问题,利用LS-DYNA仿真软件,研究了双模战斗部药型罩结构参数(药型罩锥角、药型罩壁厚)对双模毁伤元成型性能的影响规律,揭示了各结构参数对双模毁伤元成型性能的控制规律:随着药型罩锥角和壁厚的增大,双模毁伤元的头部速度下降明显。结合正交设计方法,确定了药型罩壁厚是决定两毁伤元头部速度差的主要因素,锥角是决定各毁伤元头部速度的主要因素。得到了双模毁伤元成型性能均较佳的药型罩结构参数组合:药型罩锥角为80°,药型罩上端壁厚为5.0 mm,药型罩下端壁厚为4.0 mm,药型罩倒角弧度半径为10.0 mm。为验证模拟结果,进行了X射线成像试验,数值模拟结果与试验结果吻合较好。研究结果可为双模战斗部的进一步优化设计提供参考依据。

     

  • 图  成型装药结构示意图

    Figure  1.  Schematic of shaped charge structure

    图  JPC(a)和JET(b)的成型图

    Figure  2.  JPC (a) and JET (b) molding charts

    图  毁伤元头部速度随药型罩锥角的变化曲线(a)及毁伤元成型图像(b)

    Figure  3.  Change curve of the head velocity of the damaged element with the cone angle of the liner (a) and the corresponding damage molding chart (b)

    图  毁伤元头部速度与药型罩壁厚关系曲线及毁伤元成型图

    Figure  4.  Relationship between head velocity of damage element and liner thickness and the corresponding damage molding charts

    图  毁伤元头部速度与药型罩变壁厚关系曲线及毁伤元成型图

    Figure  5.  Relationship between head velocity of damage element and varied thickness of liner and the corresponding damage molding charts

    图  双模毁伤元各指标随因素水平的变化曲线

    Figure  6.  Change curves of each index of bimodal damage element with the level of factors

    图  毁伤元成型形态仿真(上)与试验结果(下)的对比

    Figure  7.  Comparison between simulation results (above) and X-ray pictures (below) of penetrators

    表  1  材料参数及计算模型

    Table  1.   Material parameters and calculation models

    ComponentMaterialρ/(g·cm−3Material modelEquation of state
    LinerCopper8.960Johnson_CookGrüneisen
    Explosive87011.695High_Explosive_BurnJWL
    Air1.250 × 10−3NullGrüneisen
    下载: 导出CSV

    表  2  药型罩结构参数仿真方案

    Table  2.   Simulation scheme of the structural parameters of the liner

    ProjectDe/mmL/mmα/(°)h/mmh1/mmh2/mmR/mmInitiation mode
    1100.00.90De70−1000.051De0.10De1, 2
    2100.00.90De85, 900.030De−0.070De0.10De1, 2
    3100.00.90De850.035De−0.055De0.055De0.10De1, 2
    950.050De0.050De−0.030De
    下载: 导出CSV

    表  3  正交试验的各因素水平

    Table  3.   Factor levels in orthogonal test

    LevelFactor
    α/(°)h1h2R
    1800.03De0.03De0
    2850.04De0.04De0.05De
    3900.05De0.05De0.10De
    4950.06De0.06De0.15De
    51000.07De0.07De0.20De
    下载: 导出CSV

    表  4  正交阵列各方案的计算结果

    Table  4.   Calculation results of orthogonal array schemes

    ProjectLαLh1Lh2LRvtip1/(m·s−1)vtip2/(m·s−1)Δv/(m·s−1)
    111115 2118 2893 078
    212224 7988 6833 885
    313334 4367 3842 948
    414444 1266 5092 383
    515553 8364 9921 156
    621234 6598 3613 702
    722344 3206 9002 580
    823454 0005 3531 353
    924513 7416 7413 000
    1025124 4497 1932 744
    1131354 2205 9821 762
    1232413 9326 9443 012
    1333523 6486 6292 981
    1434134 3666 4412 075
    1535243 9805 3561 376
    1641423 8817 2743 393
    1742533 5826 0352 453
    1843144 3215 7681 447
    1944253 8944 9571 063
    2045313 5706 1402 570
    2151543 5195 4391 920
    2252154 2855 5861 301
    2353213 6486 3092 661
    2454323 5105 9052 395
    2555433 2175 1441 927
    下载: 导出CSV

    表  5  各指标极差

    Table  5.   Range of indicators

    FactorSvtip1/(m·s−1)Svtip2/(m·s−1)SΔv/(m·s−1)
    α845.61 494.8649.2
    h1487.61 304.0816.4
    h2861.2766.0408.4
    R36.81 762.81 752.6
    下载: 导出CSV
  • [1] 郭美芳, 范宁军. 多模式战斗部与起爆技术分析研究 [J]. 探测与控制学报, 2005, 27(1): 31–34. doi: 10.3969/j.issn.1008-1194.2005.01.009

    GUO M F, FAN N J. The study on a multimode warhead and the initiation technology [J]. Journal of Detection and Control, 2005, 27(1): 31–34. doi: 10.3969/j.issn.1008-1194.2005.01.009
    [2] 谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. doi: 10.3321/j.issn:1001-1455.2008.01.009

    TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. doi: 10.3321/j.issn:1001-1455.2008.01.009
    [3] BENDER D, FONG R, NG W, et al. Dual mode warhead technology for future smart munitions [C]//19th International Symposium on Ballistics. Interlaken, Switzerland: Casino Kursaal Congress Center, 2001: 679–684.
    [4] ARNOLD W, GRASWALD M, ROTTENKOLBER E. A novel technology for switchable modes warheads [C]//26th International Symposium on Ballistics. Miami, Florida, USA, 2011.
    [5] LI W B, WANG X, LI W B, et al. Research on the optimum length-diameter ratio of the charge of a multimode warhead [J]. Shock Waves, 2012, 22(3): 265–274. doi: 10.1007/s00193-012-0365-z
    [6] 纪冲, 龙源, 余道强, 等. 切割式双模战斗部毁伤元成型及侵彻钢靶特性研究 [J]. 高压物理学报, 2012, 26(5): 508–516. doi: 10.11858/gywlxb.2012.05.005

    JI C, LONG Y, YU D Q, et al. Experimental and numerical study on the formation and penetration properties of dual-mode warhead [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 508–516. doi: 10.11858/gywlxb.2012.05.005
    [7] 杨亚东, 陈智刚. 起爆方式对杆式射流形成影响的数值模拟研究 [J]. 弹箭与制导学报, 2008, 28(5): 89–91. doi: 10.3969/j.issn.1673-9728.2008.05.027

    YANG Y D, CHEN Z G. Numerical simulation of jetting penetrator charge formation under different initiation ways [J]. Journal of Projectiles, Rocket, Missiles and Guidance, 2008, 28(5): 89–91. doi: 10.3969/j.issn.1673-9728.2008.05.027
    [8] 樊菲. 实现杆流与射流转换的研究 [D]. 南京: 南京理工大学, 2012.

    FAN F. Research on achieving the conversion of JPC and JET [D]. Nanjing: Nanjing University of Science and Technology, 2012.
    [9] 李伟兵, 樊菲, 王晓鸣, 等. 杆式射流与射流转换的双模战斗部优化设计 [J]. 兵工学报, 2013, 34(12): 1500–1505. doi: 10.3969/j.issn.1000-1093.2013.12.003

    LI W B, FAN F, WANG X M, et al. Optimal design of dual mode warhead for jetting penetrator and jet conversion [J]. Acta Armamentarii, 2013, 34(12): 1500–1505. doi: 10.3969/j.issn.1000-1093.2013.12.003
    [10] 樊雪飞, 李伟兵, 王晓鸣, 等. 爆轰驱动钽药型罩形成双模毁伤元仿真与试验研究 [J]. 兵工学报, 2017, 38(10): 1918–1925. doi: 10.3969/j.issn.1000-1093.2017.10.006

    FAN X F, LI W B, WANG X M, et al. Simulation and experimental study of tantalum liner to form dual-mode damage element by detonation [J]. Acta Armamentraii, 2017, 38(10): 1918–1925. doi: 10.3969/j.issn.1000-1093.2017.10.006
    [11] FU J P, CHEN Z G, HOU X C, et al. Simulation and experimental investigation of jetting penetrator charge at large stand-off distance [J]. Defence Technology, 2013, 9(2): 117–124.
    [12] LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37(4): 414–424. doi: 10.1016/j.ijimpeng.2009.08.008
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  7393
  • HTML全文浏览量:  2990
  • PDF下载量:  38
出版历程
  • 收稿日期:  2020-04-07
  • 修回日期:  2020-04-26
  • 刊出日期:  2020-06-25

目录

    /

    返回文章
    返回