Orthogonal Design of the Liner Structure in Dual-Mode Charge Warhead
-
摘要: 针对双模战斗部小型化设计及其应用问题,利用LS-DYNA仿真软件,研究了双模战斗部药型罩结构参数(药型罩锥角、药型罩壁厚)对双模毁伤元成型性能的影响规律,揭示了各结构参数对双模毁伤元成型性能的控制规律:随着药型罩锥角和壁厚的增大,双模毁伤元的头部速度下降明显。结合正交设计方法,确定了药型罩壁厚是决定两毁伤元头部速度差的主要因素,锥角是决定各毁伤元头部速度的主要因素。得到了双模毁伤元成型性能均较佳的药型罩结构参数组合:药型罩锥角为80°,药型罩上端壁厚为5.0 mm,药型罩下端壁厚为4.0 mm,药型罩倒角弧度半径为10.0 mm。为验证模拟结果,进行了X射线成像试验,数值模拟结果与试验结果吻合较好。研究结果可为双模战斗部的进一步优化设计提供参考依据。Abstract: The influence of structural parameters (liner cone and thickness) of dual-mode warhead on the forming performance of dual-mode damage element is studied by LS-DYNA for the miniaturization design and application of dual-mode warhead, and the results reveal that the head speed of dual-mode damage element obviously decreases with the increase of liner cone and thickness. By the orthogonal design method, it is found that the thickness of the liner is the main factor to determine the head velocity difference between the two damage elements, and the liner cone is the main factor to determine the head velocity of each damage element. The structural parameters combination of the liner is obtained as following, whose forming performance of the dual-mode damage element is better. The liner cone is 80°, the thickness of the upper end of the liner is 5.0 mm, the thickness of the lower end of the liner is 4.0 mm, and the liner radian radius is 10.0 mm. X-ray imaging tests were done, whose results show a quantitatively good agreement between numerical simulation and tests. The research results provide a reference for the further optimization design of the dual-mode warhead.
-
Key words:
- dual-mode warhead /
- liner /
- orthogonal design /
- parameter optimization
-
表 1 材料参数及计算模型
Table 1. Material parameters and calculation models
Component Material ρ/(g·cm−3) Material model Equation of state Liner Copper 8.960 Johnson_Cook Grüneisen Explosive 8701 1.695 High_Explosive_Burn JWL Air 1.250 × 10−3 Null Grüneisen 表 2 药型罩结构参数仿真方案
Table 2. Simulation scheme of the structural parameters of the liner
Project De/mm L/mm α/(°) h/mm h1/mm h2/mm R/mm Initiation mode 1 100.0 0.90De 70−100 0.051De 0.10De 1, 2 2 100.0 0.90De 85, 90 0.030De−0.070De 0.10De 1, 2 3 100.0 0.90De 85 0.035De−0.055De 0.055De 0.10De 1, 2 95 0.050De 0.050De−0.030De 表 3 正交试验的各因素水平
Table 3. Factor levels in orthogonal test
Level Factor α/(°) h1 h2 R 1 80 0.03De 0.03De 0 2 85 0.04De 0.04De 0.05De 3 90 0.05De 0.05De 0.10De 4 95 0.06De 0.06De 0.15De 5 100 0.07De 0.07De 0.20De 表 4 正交阵列各方案的计算结果
Table 4. Calculation results of orthogonal array schemes
Project Lα Lh1 Lh2 LR vtip1/(m·s−1) vtip2/(m·s−1) Δv/(m·s−1) 1 1 1 1 1 5 211 8 289 3 078 2 1 2 2 2 4 798 8 683 3 885 3 1 3 3 3 4 436 7 384 2 948 4 1 4 4 4 4 126 6 509 2 383 5 1 5 5 5 3 836 4 992 1 156 6 2 1 2 3 4 659 8 361 3 702 7 2 2 3 4 4 320 6 900 2 580 8 2 3 4 5 4 000 5 353 1 353 9 2 4 5 1 3 741 6 741 3 000 10 2 5 1 2 4 449 7 193 2 744 11 3 1 3 5 4 220 5 982 1 762 12 3 2 4 1 3 932 6 944 3 012 13 3 3 5 2 3 648 6 629 2 981 14 3 4 1 3 4 366 6 441 2 075 15 3 5 2 4 3 980 5 356 1 376 16 4 1 4 2 3 881 7 274 3 393 17 4 2 5 3 3 582 6 035 2 453 18 4 3 1 4 4 321 5 768 1 447 19 4 4 2 5 3 894 4 957 1 063 20 4 5 3 1 3 570 6 140 2 570 21 5 1 5 4 3 519 5 439 1 920 22 5 2 1 5 4 285 5 586 1 301 23 5 3 2 1 3 648 6 309 2 661 24 5 4 3 2 3 510 5 905 2 395 25 5 5 4 3 3 217 5 144 1 927 表 5 各指标极差
Table 5. Range of indicators
Factor Svtip1/(m·s−1) Svtip2/(m·s−1) SΔv/(m·s−1) α 845.6 1 494.8 649.2 h1 487.6 1 304.0 816.4 h2 861.2 766.0 408.4 R 36.8 1 762.8 1 752.6 -
[1] 郭美芳, 范宁军. 多模式战斗部与起爆技术分析研究 [J]. 探测与控制学报, 2005, 27(1): 31–34. doi: 10.3969/j.issn.1008-1194.2005.01.009GUO M F, FAN N J. The study on a multimode warhead and the initiation technology [J]. Journal of Detection and Control, 2005, 27(1): 31–34. doi: 10.3969/j.issn.1008-1194.2005.01.009 [2] 谭多望, 孙承纬. 成型装药研究新进展 [J]. 爆炸与冲击, 2008, 28(1): 50–56. doi: 10.3321/j.issn:1001-1455.2008.01.009TAN D W, SUN C W. Progress in studies on shaped charge [J]. Explosion and Shock Waves, 2008, 28(1): 50–56. doi: 10.3321/j.issn:1001-1455.2008.01.009 [3] BENDER D, FONG R, NG W, et al. Dual mode warhead technology for future smart munitions [C]//19th International Symposium on Ballistics. Interlaken, Switzerland: Casino Kursaal Congress Center, 2001: 679–684. [4] ARNOLD W, GRASWALD M, ROTTENKOLBER E. A novel technology for switchable modes warheads [C]//26th International Symposium on Ballistics. Miami, Florida, USA, 2011. [5] LI W B, WANG X, LI W B, et al. Research on the optimum length-diameter ratio of the charge of a multimode warhead [J]. Shock Waves, 2012, 22(3): 265–274. doi: 10.1007/s00193-012-0365-z [6] 纪冲, 龙源, 余道强, 等. 切割式双模战斗部毁伤元成型及侵彻钢靶特性研究 [J]. 高压物理学报, 2012, 26(5): 508–516. doi: 10.11858/gywlxb.2012.05.005JI C, LONG Y, YU D Q, et al. Experimental and numerical study on the formation and penetration properties of dual-mode warhead [J]. Chinese Journal of High Pressure Physics, 2012, 26(5): 508–516. doi: 10.11858/gywlxb.2012.05.005 [7] 杨亚东, 陈智刚. 起爆方式对杆式射流形成影响的数值模拟研究 [J]. 弹箭与制导学报, 2008, 28(5): 89–91. doi: 10.3969/j.issn.1673-9728.2008.05.027YANG Y D, CHEN Z G. Numerical simulation of jetting penetrator charge formation under different initiation ways [J]. Journal of Projectiles, Rocket, Missiles and Guidance, 2008, 28(5): 89–91. doi: 10.3969/j.issn.1673-9728.2008.05.027 [8] 樊菲. 实现杆流与射流转换的研究 [D]. 南京: 南京理工大学, 2012.FAN F. Research on achieving the conversion of JPC and JET [D]. Nanjing: Nanjing University of Science and Technology, 2012. [9] 李伟兵, 樊菲, 王晓鸣, 等. 杆式射流与射流转换的双模战斗部优化设计 [J]. 兵工学报, 2013, 34(12): 1500–1505. doi: 10.3969/j.issn.1000-1093.2013.12.003LI W B, FAN F, WANG X M, et al. Optimal design of dual mode warhead for jetting penetrator and jet conversion [J]. Acta Armamentarii, 2013, 34(12): 1500–1505. doi: 10.3969/j.issn.1000-1093.2013.12.003 [10] 樊雪飞, 李伟兵, 王晓鸣, 等. 爆轰驱动钽药型罩形成双模毁伤元仿真与试验研究 [J]. 兵工学报, 2017, 38(10): 1918–1925. doi: 10.3969/j.issn.1000-1093.2017.10.006FAN X F, LI W B, WANG X M, et al. Simulation and experimental study of tantalum liner to form dual-mode damage element by detonation [J]. Acta Armamentraii, 2017, 38(10): 1918–1925. doi: 10.3969/j.issn.1000-1093.2017.10.006 [11] FU J P, CHEN Z G, HOU X C, et al. Simulation and experimental investigation of jetting penetrator charge at large stand-off distance [J]. Defence Technology, 2013, 9(2): 117–124. [12] LI W B, WANG X M, LI W B. The effect of annular multi-point initiation on the formation and penetration of an explosively formed penetrator [J]. International Journal of Impact Engineering, 2010, 37(4): 414–424. doi: 10.1016/j.ijimpeng.2009.08.008