RDX单晶炸药的冲击-斜波加载实验研究

种涛 莫建军 蔡进涛 王桂吉

种涛, 莫建军, 蔡进涛, 王桂吉. RDX单晶炸药的冲击-斜波加载实验研究[J]. 高压物理学报, 2020, 34(5): 051301. doi: 10.11858/gywlxb.20200529
引用本文: 种涛, 莫建军, 蔡进涛, 王桂吉. RDX单晶炸药的冲击-斜波加载实验研究[J]. 高压物理学报, 2020, 34(5): 051301. doi: 10.11858/gywlxb.20200529
CHONG Tao, MO Jianjun, CAI Jintao, WANG Guiji. Experimental Study on Shock-Ramp Wave Profiles in RDX Single Crystal Explosive[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051301. doi: 10.11858/gywlxb.20200529
Citation: CHONG Tao, MO Jianjun, CAI Jintao, WANG Guiji. Experimental Study on Shock-Ramp Wave Profiles in RDX Single Crystal Explosive[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051301. doi: 10.11858/gywlxb.20200529

RDX单晶炸药的冲击-斜波加载实验研究

doi: 10.11858/gywlxb.20200529
基金项目: 国家自然科学基金(11702276,11972031);冲击波物理与爆轰物理重点实验室基金(6142A03192007)
详细信息
    作者简介:

    种 涛(1986-),男,博士,助理研究员,主要从事动高压实验加载技术和材料动力学行为研究.E-mail:maoda318@163.com

    通讯作者:

    蔡进涛(1984-),男,博士,副研究员,主要从事含能材料动力学特性研究.E-mail:goldennoon@163.com

  • 中图分类号: O521.2; O347.3

Experimental Study on Shock-Ramp Wave Profiles in RDX Single Crystal Explosive

  • 摘要: 基于磁驱动加载装置CQ-4,完成了冲击-斜波复杂加载实验设计,开展了RDX单晶(210)、(100)两个晶向在不同加载压力下的冲击-斜波压缩实验,获得了RDX单晶样品与LiF窗口界面的速度历史曲线和纵波声速。实验结果显示:速度波剖面可分为冲击压缩、斜波压缩和卸载3部分;当冲击压力较高时,冲击压缩段中不再出现弹塑性转变以及4 GPa附近相变的速度特征波形;当冲击压力较低时,在冲击压缩段观测到了弹-黏塑性波形。

     

  • 图  冲击-斜波加载实验设计示意图

    Figure  1.  Schematic of shock-ramp wave loading experiment

    图  不同晶向RDX单晶的冲击-斜波加载实验速度曲线

    Figure  2.  Experimental data of shock-ramp wave loading on RDX single crystals with different orientations

    图  RDX单晶的纵波声速与文献结果的比较

    Figure  3.  Comparison of the longitudinal sound speed of RDX single crystal with the results of literatures

    表  1  实验条件

    Table  1.   Experimental conditions

    Exp. No.Sample 1-LiFSample 2-LiFLattice orientation
    of RDX
    U0/kVH0/mm
    ds/mmSize of LiF/
    (mm × mm)
    ds/mmSize of LiF/
    (mm × mm)
    Shot 11.101$\varnothing $10.0 × 4.0351.040$\varnothing $10.0 × 4.157(100)600.85
    Shot 21.295$\varnothing $10.0 × 4.0421.208$\varnothing $10.0 × 4.204(100)600.35
    Shot 31.104$\varnothing $10.0 × 4.075(100)500.17
    Shot 41.311$\varnothing $10.0 × 3.985(210)500.16
    下载: 导出CSV
  • [1] 谭武军. 含能晶体力学性能研究 [D]. 绵阳: 中国工程物理研究院, 2008.

    TAN W J. Studies on the mechanical properties of energetic crystals [D]. Mianyang: China Academy of Engineering Physics, 2008.
    [2] 李明, 陈天娜, 庞海燕, 等. RDX晶体的破碎与细观断裂行为 [J]. 含能材料, 2013, 21(2): 200–204. doi: 10.3969/j.issn.1006-9941.2013.02.008

    LI M, CHEN T N, PANG H Y, et al. Ruptures and mesoscale fracture behaviors of RDX crystals [J]. Chinese Journal of Energetic Materials, 2013, 21(2): 200–204. doi: 10.3969/j.issn.1006-9941.2013.02.008
    [3] 王国栋, 刘玉存. 神经网络在炸药晶体密度预测中的应用 [J]. 火炸药学报, 2007, 30(1): 57–59. doi: 10.3969/j.issn.1007-7812.2007.01.016

    WANG G D, LIU Y C. Application of artificial neural network in predicting the density of explosives [J]. Chinese Journal of Explosives & Propellants, 2007, 30(1): 57–59. doi: 10.3969/j.issn.1007-7812.2007.01.016
    [4] 花成, 傅华, 田勇, 等. 冲击波作用下HMX晶体的细观响应 [J]. 火炸药学报, 2010, 33(3): 5–8. doi: 10.3969/j.issn.1007-7812.2010.03.002

    HUA C, FU H, TIAN Y, et al. Meso-scale response of HMX crystal under the shock waveeffect [J]. Chinese Journal of Explosives & Propellants, 2010, 33(3): 5–8. doi: 10.3969/j.issn.1007-7812.2010.03.002
    [5] HALL C A, ASAY J R, KNUDSON M D, et al. Experimental configuration for isentropic compression of solids using pulsed magnetic loading [J]. Review of Scientific Instruments, 2001, 72(9): 3587–3595. doi: 10.1063/1.1394178
    [6] HARE D E, FORBES J W, REISMAN D B, et al. Isentropic compression loading of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX) and the pressure-induced phase transition at 27 GPa [J]. Applied Physics Letters, 2004, 85(6): 949–951. doi: 10.1063/1.1771464
    [7] HARE D E, REISMAN D B, GARCIA F, et al. The isentrope of unreacted LX-04 to 170 kbar [J]. AIP Conference Proceedings, 2004, 706(1): 145–148.
    [8] HARE D E, REISMAN D B, DICK J J, et al. Isentropic compression loading of HMX and the pressure-induced phase transition at 27 GPa: UCRL-JRNL-202601 [R]. Livermore, USA: Lawrence Livermore National Laboratory, 2004.
    [9] BAER M R, ROOT S, DATTELBAUM D, et al. Shockless compression studies of HMX-based explosives [J]. AIP Conference Proceedings, 2009, 1195(1): 699–702.
    [10] BAER M R, HALL C A, GUSTAVSEN R L, et al. Isentropic loading experiments of a plastic bonded explosive and constituents [J]. Journal of Applied Physics, 2007, 101(3): 034906. doi: 10.1063/1.2399881
    [11] INFANTE-CASTILLO R, PACHECO-LONDOÑO L C, HERNÁNDEZ-RIVERA S P. Monitoring the αβ solid-solid phase transition of RDX with Raman spectroscopy: atheoretical and experimental study [J]. Journal of Molecular Structure, 2010, 970(1/2/3): 51–58.
    [12] GOTO N, FUJIHISA H, YAMAWAKI H, et al. Crystal structure of the high-pressure phase of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (γ-RDX) [J]. The Journal of Physical Chemistry B, 2006, 110(47): 23655–23659. doi: 10.1021/jp0635359
    [13] PATTERSON J E, DREGER Z A, GUPTA Y M. Shock wave-induced phase transition in RDX single crystals [J]. The Journal of Physical Chemistry B, 2007, 111(37): 10897–10904. doi: 10.1021/jp079502q
    [14] CAWKWELL M J, RAMOS K J, HOOKS D E, et al. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading [J]. Journal of Applied Physics, 2010, 107(6): 063512. doi: 10.1063/1.3305630
    [15] RAMOS K J, HOOKS D E, SEWELL T D, et al. Anomalous hardening under shock compression in (021)-oriented cyclotrimethylene trinitramine single crystals [J]. Journal of Applied Physics, 2010, 108(6): 066105. doi: 10.1063/1.3485807
    [16] CAWKWELL M J, SEWELL T D, ZHENGL Q, et al. Shock-induced shear bands in an energetic molecular crystal: application of shock-front absorbing boundary conditions to molecular dynamics simulations [J]. Physical Review B, 2008, 78(1): 014107. doi: 10.1103/PhysRevB.78.014107
    [17] HOOKS D E, RAMOS K J, MARTINEZ A R. Elastic-plastic shock wave profiles in oriented single crystals of cyclotrimethylene trinitramine (RDX) at 2.25 GPa [J]. Journal of Applied Physics, 2006, 100(2): 024908. doi: 10.1063/1.2214639
    [18] 种涛, 蔡进涛, 赵剑衡, 等. 斜波压缩下RDX单晶弹塑性及相变过程的数值模拟 [C]//第11届全国爆轰学术会议. 玉溪, 2016.

    CHONG T, CAI J T, ZHAO J H, et al. Numerical simulation of elastoplasticity and phase transformation of RDX single crystal under ramp wave loading [C]//11th National Detonation Conference. Yuxi, 2016.
    [19] CAI J T, ZHAO F, WANG G J, et al. Experimental research on elastic-plastic transition and α to γ phase transformation of RDX crystal under ramp loading [C]//Proceedings of 2015 International Autumn Seminar on Propellants, Explosives and Pyrotechnics. Qingdao, 2015.
    [20] WANG G J, LUO B Q, ZHANG X P, et al. A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading [J]. Review of Scientific Instruments, 2013, 84(1): 015117. doi: 10.1063/1.4788935
    [21] OLINGER B, ROOF B, CADY H H. The linear and volume compression of β -HMX and RDX [C]//Proceedings of Symposium (International) on High Dynamic Pressures. Paris: CEA, 1978: 3–8.
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  6836
  • HTML全文浏览量:  3297
  • PDF下载量:  40
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-06-17

目录

    /

    返回文章
    返回