冲击荷载对无烟煤微观孔隙影响的分形研究

王以贤 梁为民

王以贤, 梁为民. 冲击荷载对无烟煤微观孔隙影响的分形研究[J]. 高压物理学报, 2020, 34(5): 054203. doi: 10.11858/gywlxb.20200528
引用本文: 王以贤, 梁为民. 冲击荷载对无烟煤微观孔隙影响的分形研究[J]. 高压物理学报, 2020, 34(5): 054203. doi: 10.11858/gywlxb.20200528
WANG Yixian, LIANG Weimin. Fractal Study on Influence of Impact Load on Microscopic Pore of Anthracite[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054203. doi: 10.11858/gywlxb.20200528
Citation: WANG Yixian, LIANG Weimin. Fractal Study on Influence of Impact Load on Microscopic Pore of Anthracite[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054203. doi: 10.11858/gywlxb.20200528

冲击荷载对无烟煤微观孔隙影响的分形研究

doi: 10.11858/gywlxb.20200528
基金项目: 国家自然科学基金(41772163)
详细信息
    作者简介:

    王以贤(1981–),男,博士研究生,讲师,主要从事爆破工程及岩土工程研究.E-mail:56653648@qq.com

    通讯作者:

    梁为民(1967–),男,博士,教授,主要从事爆破工程及岩土工程研究.E-mail:liangwm@hpu.edu.cn

  • 中图分类号: O347.2

Fractal Study on Influence of Impact Load on Microscopic Pore of Anthracite

  • 摘要: 为了揭示冲击荷载对无烟煤微观孔隙结构的影响规律,利用分离式霍普金森压杆(SHPB)冲击实验系统模拟了冲击应力在不同衰减过程中的冲击波和应力波,基于冲击前后压汞实验及低温液氮实验测试数据,运用分形理论,研究了赵固二矿不同方向煤体(与层理方向分别呈垂直、平行、45°斜交)冲击前后孔隙结构的分形特征。结果表明:对于渗流孔,冲击荷载提高了瓦斯的渗流与运移速度,对于吸附孔,冲击荷载减小了吸附孔的吸附能力,促进了瓦斯的解吸;分形维数具有明显的冲击方向性,且吸附孔的分形维数明显小于渗流孔;不同方向无烟煤的最佳冲击荷载不同,垂直和斜交层理方向的最佳冲击荷载为51.80 MPa,平行层理方向的最佳冲击荷载为28.46 MPa。研究结果可为冲击荷载促进瓦斯抽采机理的探讨提供参考。

     

  • 图  煤样图片及尺寸

    Figure  1.  Picture and size of the coal sample

    图  实验方案

    Figure  2.  Experimental scheme

    图  垂直层理方向渗流孔分形维数的对比

    Figure  3.  Fractal dimension of the seepage hole in the vertical bedding direction

    图  平行层理方向渗流孔分形维数的对比

    Figure  4.  Fractal dimension of the seepage hole in the parallel bedding direction

    图  斜交层理方向渗流孔分形维数的对比

    Figure  5.  Fractal dimension of the seepage hole in the oblique bedding direction

    图  垂直层理方向吸附孔分形维数的对比

    Figure  6.  Fractal dimension of the adsorption hole in the vertical bedding direction

    图  平行层理方向吸附孔分形维数的对比

    Figure  7.  Fractal dimension of the adsorption hole in the parallel bedding direction

    图  斜交层理方向吸附孔分形维数的对比

    Figure  8.  Fractal dimension of the adsorption hole in the oblique bedding direction

    图  不同方向煤体渗流孔与吸附孔分形维数减小率随冲击荷载的变化

    Figure  9.  Fractal dimension reduction rates of the seepage hole and adsorption hole vary with the impact load

    图  10  不同方向煤体的分形维数与冲击荷载之间的关系

    Figure  10.  Relationship between the fractal dimension and the impact load of coal bodies in different directions

    表  1  煤样基本参数

    Table  1.   Basic parameters of coal samples

    No.$\;\rho $/(g·cm−3)fc/MPa CL/(km·s−1)R0,max/%Mass fraction/%
    AshVolatile
    component
    Fixed carbonExiniteVitriniteInertinite
    C01.42317.291.3813.325.626.0583.981981
    P01.46115.131.852
    X01.42211.651.653
    下载: 导出CSV

    表  2  实验数据表

    Table  2.   Impact test data

    DirectionpI/MPapL/MPaNo.Size/mm × mm$ D_{\rm{s} }$$\bar D_{\rm{s} }$$R_{\rm{s} }^2$$ D_{\rm{x} }$$\bar D_{\rm{x} }$$R_{\rm{x}}^2$$d $$\bar d$
    Vertical
    bedding
    00YC12.992.980.972.752.780.95
    YC22.990.992.780.96
    YC32.950.982.810.98
    0.1028.46C1 $ \varnothing $49.75 × 50.332.852.850.952.312.230.950.140.14
    C2$ \varnothing $49.33 × 49.892.920.962.210.930.16
    C3$ \varnothing $49.34 × 50.422.790.952.170.960.12
    0.1532.59C4$ \varnothing $49.42 × 49.572.732.730.992.192.190.950.180.16
    C5$ \varnothing $49.66 × 49.932.780.972.230.960.12
    C6$ \varnothing $49.42 × 50.842.690.942.150.950.18
    0.2041.43C7$ \varnothing $49.39 × 49.932.632.682.052.130.960.180.17
    C8$ \varnothing $49.42 × 49.762.710.982.210.970.17
    C9$ \varnothing $49.45 × 50.282.690.992.130.980.15
    0.3051.80C10$ \varnothing $49.52 × 50.472.562.510.992.052.050.990.170.19
    C11$ \varnothing $49.36 × 49.782.640.962.090.960.19
    C12$ \varnothing $49.27 × 50.272.340.942.010.960.22
    0.5058.70C13$ \varnothing $49.38 × 50.472.742.730.922.112.120.920.330.44
    C14$ \varnothing $49.45 × 50.212.790.942.170.930.57
    C15$ \varnothing $49.49 × 49.442.670.952.070.980.42
    Parallel
    bedding
    00YP12.842.870.992.892.860.95
    YP22.910.962.860.94
    YP32.870.972.830.96
    0.1028.46P1$ \varnothing $49.29 × 50.112.572.570.992.032.030.980.130.13
    P2$ \varnothing $49.36 × 50.372.650.982.050.950.11
    P3$ \varnothing $49.47 × 49.882.500.992.020.960.15
    0.1532.59P4$ \varnothing $49.31 × 49.322.582.580.972.152.151.000.310.25
    P5$ \varnothing $49.33 × 50.282.610.982.190.950.22
    P6$ \varnothing $49.31 × 49.162.560.952.110.970.22
    Parallel
    bedding
    0.2041.43P7$ \varnothing $49.33 × 50.332.642.640.922.202.190.950.180.28
    P8$ \varnothing $49.60 × 49.852.680.932.140.960.22
    P9$ \varnothing $49.31 × 50.112.610.952.240.980.44
    0.3051.80P10$ \varnothing $49.31 × 50.402.812.810.942.212.180.950.370.34
    P11$ \varnothing $49.05 × 49.872.850.952.160.970.30
    P12$ \varnothing $49.42 × 49.872.780.942.180.960.35
    0.5058.70P13$ \varnothing $49.40 × 49.932.892.810.952.822.730.970.540.50
    P14$ \varnothing $49.62 × 49.962.810.992.730.960.49
    P15$ \varnothing $49.32 × 49.792.730.952.630.960.47
    45° oblique bedding00YX12.812.810.942.772.780.95
    YX22.850.952.710.95
    YX32.780.972.850.96
    0.1028.46X1$ \varnothing $49.49 × 50.032.752.750.992.382.380.970.170.16
    X2$ \varnothing $49.27 × 49.632.810.982.280.950.19
    X3$ \varnothing $49.31 × 49.302.680.972.470.960.12
    0.1532.59X4$ \varnothing $49.24 × 49.932.672.650.992.392.310.980.290.24
    X5$ \varnothing $49.27 × 49.332.750.952.310.960.21
    X6$ \varnothing $49.27 × 49.822.540.982.230.950.22
    0.2041.43X7$ \varnothing $49.25 × 49.902.762.700.952.082.120.940.200.22
    X8$ \varnothing $49.60 × 49.382.710.922.170.920.21
    X9$ \varnothing $49.29 × 49.052.640.932.120.930.25
    0.3051.80X10$ \varnothing $49.40 × 50.282.472.550.982.012.060.930.210.18
    X11$ \varnothing $49.38 × 50.882.610.962.070.920.17
    X12$ \varnothing $49.71 × 50.022.580.972.110.950.16
    0.5058.70X13$ \varnothing $49.66 × 50.442.792.730.982.262.280.960.630.71
    X14$ \varnothing $49.73 × 49.912.750.972.310.940.72
    X15$ \varnothing $49.46 × 50.052.640.962.280.930.78
    下载: 导出CSV
  • [1] 高为, 易同生, 金军, 等. 黔西地区煤样孔隙综合分形特征及对孔渗性的影响 [J]. 煤炭学报, 2017, 42(5): 1258–1265.

    GAO W, YI T S, JIN J, et al. Pore integrated fractal characteristics of coal sample in western Guizhou and its impact to porosity and permeability [J]. Journal of China Coal Society, 2017, 42(5): 1258–1265.
    [2] 秦勇, 邱爱慈, 张永民. 高聚能重复强脉冲波煤储层增渗新技术试验与探索 [J]. 煤炭科学技术, 2014, 42(6): 1–7.

    QIN Y, QIU A C, ZHANG Y M. Experiment and discovery on permeability improved technology of coal reservoir based on repeated strong pulse waves of high energy accumulation [J]. Coal Science and Technology, 2014, 42(6): 1–7.
    [3] WEI G Y, SHAN Z Y, ZHANG Z M. Research on hydraulic slotting technology controlling coal-gas outbursts [J]. Journal of Coal Science and Engineering, 2008, 14(1): 67–72. doi: 10.1007/s12404-008-0014-4
    [4] 姜永东, 李业, 崔悦震, 等. 声场作用下煤储层渗透性试验研究 [J]. 煤炭学报, 2017, 42(S1): 154–159.

    JIANG Y D, LI Y, CUI Y Z, et al. Experimental study on characteristics of coal reservoir permeability under acoustic wave [J]. Journal of China Coal Society, 2017, 42(S1): 154–159.
    [5] 赵丽娟, 秦勇. 超声波作用对改善煤储层渗透性的试验分析 [J]. 天然气地球科学, 2014, 25(5): 747–752.

    ZHAO L J, QIN Y. Experiment on improving the permeability of coal reservoir under ultrasound [J]. Natural Gas Geoscience, 2014, 25(5): 747–752.
    [6] FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impacting Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F
    [7] 穆朝民, 王海露, 黄文尧, 等. 高瓦斯低透气性煤体定向聚能爆破增透机制 [J]. 岩土力学, 2013, 34(9): 2496–2500.

    MU C M, WANG H L, HUANG W Y, et al. Increasing permeability mechanism using directional cumulative blasting in coal seams with high concentration of gas and low permeability [J]. Rock and Siol Mechanics, 2013, 34(9): 2496–2500.
    [8] 李恒乐, 秦勇, 张永民, 等. 重复脉冲强冲击波对肥煤结构影响的实验研究 [J]. 煤炭学报, 2015, 40(4): 915–921.

    LI H L, QIN Y, ZHANG Y M, et al. Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal [J]. Journal of China Coal Society, 2015, 40(4): 915–921.
    [9] CAI Y D, LIU D M, PAN Z J, et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China [J]. Fuel, 2013, 103: 258–268. doi: 10.1016/j.fuel.2012.06.055
    [10] MANDELBROT B B. The fractal geometry of nature [M]. San Francisco: Freeman, 1982: 35.
    [11] BIRD N, DÍAZ M C, SAA A, et al. Fractal and multifractal analysis of pore-scale images of soil [J]. Journal of Hydrology, 2006, 322(1/2/3/4): 211–219.
    [12] DATHE A, EINS S, NIEMEYER J, et al. The surface fractal dimension of the soil-pore interface as measured by image analysis [J]. Geoderma, 2001, 103(1/2): 203–229.
    [13] HUANG S J, YU Y C, LEE T Y, et al. Correlations and characterization of porous solids by fractal dimension and porosity [J]. Physica A: Statistical Mechanics and Its Applications, 1999, 274(3/4): 419–432.
    [14] HILDGEN P, NEKKA F, HILDGEN F, et al. Macroporosity measurement by fractal analysis [J]. Physica A: Statistical Mechanics and Its Applications, 1997, 234(3/4): 593–603.
    [15] YANG F, NING Z F, LIU H Q. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China [J]. Fuel, 2014, 115: 378–384. doi: 10.1016/j.fuel.2013.07.040
    [16] LIU X J, XIONG J, LIANG L X. Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis [J]. Journal of Natural Gas Science and Engineering, 2015, 22(1): 62–72.
    [17] 朱汉卿, 贾爱林, 位云生, 等. 蜀南地区五峰-龙马溪组页岩微观孔隙结构及分形特 [J]. 科学技术与工程, 2018, 18(10): 12–19. doi: 10.3969/j.issn.1671-1815.2018.10.003

    ZHU H Q, JIA A L, WEI Y S, et al. Microscopic pore structure and fractal characteristics of Wufeng-Longmaxi shale, south Sichuan [J]. Science Technology and Engineering, 2018, 18(10): 12–19. doi: 10.3969/j.issn.1671-1815.2018.10.003
    [18] GARBACZ J K. Fractal description of partially mobile single gas adsorption on energetically homogeneous solid adsorbent [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1998, 143(1): 95–101.
    [19] LEE G J, PYUN S Ⅰ, RHEE C K. Characterization of geometric and structural properties of pore surfaces of reactivated microporous carbons based upon image analysis and gas adsorption [J]. Microporous and Mesoporous Materials, 2006, 93(1/2/3): 217–225.
    [20] YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of adsorption-pores of coals from North China: an investigation on CH4 adsorption capacity of coals [J]. International Journal of Coal Geology, 2008, 73(1): 27–42. doi: 10.1016/j.coal.2007.07.003
    [21] XU L J, ZHANG D J, XIAN X F. Fractal dimensions of coals and cokes [J]. Journal of Colloid and Interface Science, 1997, 190(2): 357–359. doi: 10.1006/jcis.1997.4885
    [22] 宋昱, 姜波, 李凤丽, 等. 低-中煤级构造煤纳米孔分形模型适用性及分形特征 [J]. 地球科学, 2018, 43(5): 1611–1622.

    SONG Y, JIANG B, LI F L, et al. Applicability of fractal models and nanopores’ fractal characteristics for low-middle rank tectonic deformed coals [J]. Earth Science, 2018, 43(5): 1611–1622.
    [23] 王登科, 刘淑敏, 魏建平, 等. 冲击载荷作用下煤的破坏特性试验研究 [J]. 采矿与安全工程学报, 2017, 34(3): 594–600.

    WANG D K, LIU S M, WEI J P, et al. The failure characteristics of coal under impact load in laboratory [J]. Journal of Mining & Safety Engineering, 2017, 34(3): 594–600.
    [24] 刘晓辉, 张茹, 刘建锋. 不同应变率下煤岩冲击动力试验研究 [J]. 煤炭学报, 2012, 37(9): 1528–1534.

    LIU X H, ZHANG R, LIU J F. Dynamic test study of coal rock under different strain rates [J]. Journal of China Coal Society, 2012, 37(9): 1528–1534.
    [25] XODOT B B. 煤与瓦斯突出 [M]. 宋世钊, 王佑安, 译. 北京: 中国工业出版社, 1966: 310–318.
    [26] YUAN J, TAKEDA N, WAAS A M. A note on data processing in the split Hopkinson pressure bar tests [J]. Experimental Techniques, 1998, 22(5): 21–24. doi: 10.1111/j.1747-1567.1998.tb02317.x
    [27] SHAN R L, JIANG Y S, LI B Q. Obtaining dynamic complete stress-strain curves for rock using the split Hopkinson pressure bar technique [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(6): 983–992. doi: 10.1016/S1365-1609(00)00031-9
    [28] 陈俊宇, 裴向军, 杜瑞锋, 等. 冲击载荷作用下砂岩的动力学特性及能耗规律 [J]. 科学技术与工程, 2019, 19(31): 304–310. doi: 10.3969/j.issn.1671-1815.2019.31.045

    CHEN J Y, PEI X J, DU R F, et al. Dynamic characteristics and energy consumption of sandstone under impact loading [J]. Science Technology and Engineering, 2019, 19(31): 304–310. doi: 10.3969/j.issn.1671-1815.2019.31.045
    [29] KOLSKY H. An investigation of the mechanical properties of materials at very high rates of loading [J]. Proceedings of the Physical Society (Section B), 1949, 62: 676–700. doi: 10.1088/0370-1301/62/11/302
    [30] LUNDBERG B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1976, 13(6): 187–197.
    [31] 赵迪斐, 郭英海, WANG G, 等. 基于分形建模的高煤级煤孔隙结构特征量化表征-以阳泉矿区山西组煤样为例 [J]. 东北石油大学学报, 2019, 43(3): 53–67. doi: 10.3969/j.issn.2095-4107.2019.03.006

    ZHAO D F, GUO Y H, WANG G, et al. Quantitative characterization of pore structure characteristics of high quality coal based on fractal modeling: taking coal samples from Shanxi Formation in Yangquan Mining Area as an example [J]. Journal of Northeast Petroleum University, 2019, 43(3): 53–67. doi: 10.3969/j.issn.2095-4107.2019.03.006
    [32] RIGBY S P. Predicting surface diffusivities of molecules from equilibrium adsorption isotherms [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 262(1/2/3): 139–149.
    [33] 杨峰, 宁正福, 张世栋, 等. 基于氮气吸附实验的页岩孔隙结构表征 [J]. 天然气工业, 2013, 33(4): 135–140. doi: 10.3787/j.issn.1000-0976.2013.04.025

    YANG F, NING Z F, ZHANG S D, et al. Characterization of pore structures in shales through nitrogen adsorption experiment [J]. Natural Gas Industry, 2013, 33(4): 135–140. doi: 10.3787/j.issn.1000-0976.2013.04.025
    [34] 吉小峰. 煤中纳米孔隙发育特征及其对气体运移的控制机理研究 [D]. 焦作: 河南理工大学, 2018.

    JI X F. Development characteristics of nanopores in coal and its controlling mechanism on gas migration [D]. Jiaozuo: Henan Polytechnic University, 2018.
    [35] YAO Y B, LIU D M, TANG D Z, et al. Fractal characterization of seepage-pores of coals from China: an investigation on permeability of coals [J]. Computers & Geosciences, 2009, 35(6): 1159–1166.
    [36] 宋晓夏, 唐跃刚, 李伟, 等. 中梁山南矿构造煤吸附孔分形特征 [J]. 煤炭学报, 2013, 38(1): 134–139.

    SONG X X, TANG Y G, LI W, et al. Fractal characteristics of adsorption pores of tectonic coal from Zhongliangshan southern coalmine [J]. Journal of China Coal Society, 2013, 38(1): 134–139.
    [37] 林海飞, 刘静波, 严敏, 等. CO2/CH4在煤储层中扩散规律的分子动力学模型 [J]. 中国安全生产科学技术, 2017, 13(1): 84–89.

    LIN H F, LIU J B, YAN M, et al. Molecular dynamics simulation on diffusion rules of CO2/CH4 in coal reservoir [J]. Journal of Safety Science and Technology, 2017, 13(1): 84–89.
    [38] 董怡静, 韩雨桢, 候泉林, 等. 煤变形产气的力化学机理探讨 [J]. 煤炭学报, 2017, 42(4): 942–949.

    DONG Y J, HAN Y Z, HOU Q L, et al. Mechanochemistry mechanism of gas generation during coal deformation [J]. Journal of China Coal Society, 2017, 42(4): 942–949.
    [39] 刘运通, 高文学. 爆炸荷载下岩石损伤的数值模拟研究 [J]. 岩石力学与工程学报, 2001, 20(6): 789–792. doi: 10.3321/j.issn:1000-6915.2001.06.007

    LIU Y T, GAO W X. Numerical simulation on rock damage under explosion loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(6): 789–792. doi: 10.3321/j.issn:1000-6915.2001.06.007
    [40] 唐红梅, 周云涛, 廖云平. 地下工程施工爆破围岩损伤分区研究 [J]. 振动与冲击, 2015, 34(23): 202–206.

    TANG H M, ZHOU Y T, LIAO Y P. Damage zone of surrounding rock of underground engineering under construction blasting [J]. Journal of Vibration and Shock, 2015, 34(23): 202–206.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  6519
  • HTML全文浏览量:  2387
  • PDF下载量:  19
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-03-26

目录

    /

    返回文章
    返回