Crystallographic Studies of Ultra-dense Solid Hydrogen
-
摘要: 在极端条件下,固态氢会经历一系列相变,理论预测其在足够高的压力下会演变为金属。由于金属氢被预测具有室温超导和超流等特性,其研究受到了学界的极大关注。然而,研究金属氢存在巨大的技术挑战:一方面,达到氢金属化的压力条件极为苛刻,至今对冷压下是否已制备出金属氢仍未达成共识;另一方面,超高压下氢的精确表征十分困难,特别是表征固态氢晶体结构的技术手段更是严重滞后。晶体结构作为了解一种材料的最基本信息,对其认知的匮乏阻碍了理解氢在高压下如何逐步演化为金属氢的过程。为此,着眼于超高压氢的晶体结构测量,发展了一套先进同步辐射X射线衍射方法,在室温下将氢的晶体结构测量扩展至254 GPa,将相关压力记录提高了一倍。介绍了相关的技术突破,探讨了在超高压下对氢进行晶体结构测量的方法以及存在的问题,以期为在更高压力条件下测量氢的结构信息做好铺垫。Abstract: Under extreme compression, hydrogen goes through a series of phase transitions, and may transform to an exotic metal predicted by theoretical calculations. The pursuit of metallic hydrogen by the high pressure community is intense due to the predicted room temperature superconductivity and super-fluidity. Unfortunately, significant technical obstacles present for such studies. On one hand, achieving the pressure of metallic hydrogen is daunting, as a result, there has been no consensus on the success synthesis of cold compressed metallic hydrogen yet. On the other hand, accurate characterizations of ultra-dense hydrogen remain very difficult, especially for measuring crystal structure. The lack of crystal structural information (the most fundamental information of a material) of hydrogen prevents understanding how does hydrogen evolves structurally to achieve the predicted metal from an insulating solid. In order to measure the crystal structure of hydrogen at ultrahigh pressures, we developed a series of advanced synchrotron X-ray diffraction techniques, and extended the crystal structural data of hydrogen to 254 GPa, which doubled the previous pressure record. In this paper, we will introduce our technical developments and discuss the related issues, in order to provide guidance for measuring crystallographic data of solid hydrogen at higher pressures.
-
Key words:
- hydrogen /
- ultrahigh pressure /
- crystal structure /
- X-ray diffraction
-
图 4 300 nm聚焦光束、MCC采集X射线衍射数据结果:(a)MarCCD165探测器采集数据,(b)Pilatus1M探测器采集数据,(c)不同实验条件的摇摆曲线对比,(d)X射线衍射对比度成像结果(左图为二维扫描采集的样品X射线衍射对比度成像,灰色代表氧化镁衍射峰,橙色代表金的衍射峰,白色区域为氢;右图为氢晶粒的X射线衍射对比度成像,红色代表氢的衍射峰强弱)
Figure 4. XRD data collected by using 300 nm X-ray beam and MCC:MarCCD165 and Pilatus 1M were used in (a) and (b),respectively;Comparison of rocking curves in different experimental conditions (c);XRD contrast imaging(Two dimensional XRD contrast imaging of a sample(left)and a crystal grain of hydrogen(right). Left:grey, orange, and white represent the XRD peak intensity from MgO, Au, and hydrogen, respectively. Right:darker red color represents stronger XRD signal.)(d)
-
[1] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590 [2] ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748 [3] BABAEV E, SUDBØ A, ASHCROFT N W. A superconductor to superfluid phase transition in liquid metallic hydrogen [J]. Nature, 2004, 431(7009): 666–668. doi: 10.1038/nature02910 [4] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3 [5] EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x [6] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579 [7] EREMETS M I, TROYAN I A. Conductive dense hydrogen [J]. Nature Materials, 2011, 10(12): 927. doi: 10.1038/nmat3175 [8] EREMETS M I, DROZDOV A P. Comments on: the claimed observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL]. arXiv: 1702.05125v1, [2020-03-03]. https://www.researchgate.net/publication/313844817. [9] GONCHAROV A F, STRUZHKIN V V. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): eaam9736. doi: 10.1126/science.9736 [10] LIU X D, DALLADAY-SIMPSON P, HOWIE R T, et al. Comment on “observation of the Wigner-Huntington transition to metallic hydrogen” [J]. Science, 2017, 357(6353): eaan2286. doi: 10.1126/science.2286 [11] LOUBEYRE P, OCCELLI F, DUMAS P. Comment on: observation of the Wigner-Huntington transition to metallic hydrogen [EB/OL]. arXiv: 1702.07192, [2020-03-03]. [12] SILVERA I F, DIAS R. Comment on: observation of a first order phase transition to metal hydrogen near 425 GPa [EB/OL]. arXiv: 1907.03198, [2020-03-03]. https://www.ncbi.nlm.nih.gov/pubmed/28839044. [13] GENG H Y. Public debate on metallic hydrogen to boost high pressure research [J]. Matter and Radiation at Extremes, 2017, 2(6): 275–277. doi: 10.1016/j.mre.2017.10.001 [14] GREGORYANZ E. Everything you always wanted to know about metallic hydrogen but were afraid to ask [J]. Matter and Radiation at Extremes(In Press), 2020. [15] HEMLEY R J, MAO H K. Phase transition in solid molecular hydrogen at ultrahigh pressures [J]. Physical Review Letters, 1988, 61(7): 857–860. doi: 10.1103/PhysRevLett.61.857 [16] GONCHAROV A F, GREGORYANZ E, HEMLEY R J, et al. Spectroscopic studies of the vibrational and electronic properties of solid hydrogen to 285 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(25): 14234–14237. doi: 10.1073/pnas.201528198 [17] LOUBEYRE P, OCCELLI F, LETOULLEC R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature, 2002, 416(6881): 613–617. doi: 10.1038/416613a [18] HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501 [19] HOWIE R T, SCHELER T, GUILLAUME C L, et al. Proton tunneling in phase IV of hydrogen and deuterium [J]. Physical Review B, 2012, 86(21): 214104. doi: 10.1103/PhysRevB.86.214104 [20] LOUBEYRE P, OCCELLI F, DUMAS P. Hydrogen phase IV revisited via synchrotron infrared measurements in H2 and D2 up to 290 GPa at 296 K [J]. Physical Review B, 2013, 87(13): 134101. doi: 10.1103/PhysRevB.87.134101 [21] ZHA C S, COHEN R E, MAO H K, et al. Raman measurements of phase transitions in dense solid hydrogen and deuterium to 325 GPa [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(13): 4792–4797. doi: 10.1073/pnas.1402737111 [22] DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164 [23] ZHA C S, LIU H Y, TSE J S, et al. Melting and high P-T transitions of hydrogen up to 300 GPa [J]. Physical Review Letters, 2017, 119(7): 075302. doi: 10.1103/PhysRevLett.119.075302 [24] GONCHAROV A F, CHUVASHOVA I, JI C, et al. Intermolecular coupling and fluxional behavior of hydrogen in phase IV [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25512–25515. doi: 10.1073/pnas.1916385116 [25] GONCHAROV A F, TSE J S, WANG H, et al. Bonding, structures, and band gap closure of hydrogen at high pressures [J]. Physical Review B, 2013, 87(2): 024101. doi: 10.1103/PhysRevB.87.024101 [26] ZHA C S, LIU Z X, HEMLEY R J. Synchrotron infrared measurements of dense hydrogen to 360 GPa [J]. Physical Review Letters, 2012, 108(14): 146402. doi: 10.1103/PhysRevLett.108.146402 [27] EREMETS M I, TROYAN I A, LERCH P, et al. Infrared study of hydrogen up to 310 GPa at room temperature [J]. High Pressure Research, 2013, 33(2): 377–380. doi: 10.1080/08957959.2013.794229 [28] ZHA C S, LIU Z X, AHART M, et al. High-pressure measurements of hydrogen phase IV using synchrotron infrared spectroscopy [J]. Physical Review Letters, 2013, 110(21): 217402. doi: 10.1103/PhysRevLett.110.217402 [29] MCMAHON J M, MORALES M A, PIERLEONI C, et al. The properties of hydrogen and helium under extreme conditions [J]. Reviews of Modern Physics, 2012, 84(4): 1607–1653. doi: 10.1103/RevModPhys.84.1607 [30] HOWIE R T, DALLADAY-SIMPSON P, GREGORYANZ E. Raman spectroscopy of hot hydrogen above 200 GPa [J]. Nature Materials, 2015, 14(5): 495–499. doi: 10.1038/nmat4213 [31] JIANG S Q, HOLTGREWE N, GEBALLE Z M, et al. A spectroscopic study of the insulator-metal transition in liquid hydrogen and deuterium [J]. Advanced Science, 2020, 7(2): 1901668. doi: 10.1002/advs.201901668 [32] CELLIERS P M, MILLOT M, BRYGOO S, et al. Insulator-metal transition in dense fluid deuterium [J]. Science, 2018, 361(6403): 677–682. doi: 10.1126/science.aat0970 [33] MCWILLIAMS R S, DALTON D A, MAHMOOD M F, et al. Optical properties of fluid hydrogen at the transition to a conducting state [J]. Physical Review Letters, 2016, 116(25): 255501. doi: 10.1103/PhysRevLett.116.255501 [34] KNUDSON M D, DESJARLAIS P, BECKER A, et al. Direct observation ofan abrupt insulator-to-metal transition in dense liquid deuterium [J]. Science, 2015, 348(6242): 1455–1460. doi: 10.1126/science.aaa7471 [35] MAO H K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Reviews of Modern Physics, 1994, 66(2): 671–692. doi: 10.1103/RevModPhys.66.671 [36] LORENZANA H E, SILVERA I F, GOETTEL K A. Orientational phase transitions in hydrogen at megabar pressures [J]. Physical Review Letters, 1990, 64(16): 1939–1942. doi: 10.1103/PhysRevLett.64.1939 [37] SILVERA I F, WIJNGAARDEN R J. New low-temperature phase of molecular deuterium at ultrahigh pressure [J]. Physical Review Letters, 1981, 47(1/2/3/4/5/6): 39–42. doi: 10.1103/PhysRevLett.47.39 [38] MAZIN I I, HEMLEY R J, GONCHAROV A F, et al. Quantum and classical orientational ordering in solid hydrogen [J]. Physical Review Letters, 1997, 78(6): 1066–1069. doi: 10.1103/PhysRevLett.78.1066 [39] CUI T, CHENG E, ALDER B J, et al. Rotational ordering in solid deuterium and hydrogen: a path integral Monte Carlo study [J]. Physical Review B, 1997, 55(18): 12253–12266. doi: 10.1103/PhysRevB.55.12253 [40] EDWARDS B, ASHCROFT N W, LENOSKY T. Layering transitions and the structure of dense hydrogen [J]. Europhysics Letters, 1996, 34(7): 519–524. doi: 10.1209/epl/i1996-00489-5 [41] KAXIRAS E, GUO Z. Orientational order in dense molecular hydrogen: a first-principles path-integral Monte Carlo calculation [J]. Physical Review B, 1994, 49(17): 11822–11832. doi: 10.1103/PhysRevB.49.11822 [42] MOSHARY F, CHEN N H, SILVERA I F. Remarkable high pressure phase line of orientational order in solid hydrogen deuteride [J]. Physical Review Letters, 1993, 71(23): 3814–3817. doi: 10.1103/PhysRevLett.71.3814 [43] PICKARD C J, NEEDS R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473–476. doi: 10.1038/nphys625 [44] PICKARD C J, MARTINEZ-CANALES M, NEEDS R J. Density functional theory study of phase IV of solid hydrogen [J]. Physical Review B, 2012, 85(21): 214114. doi: 10.1103/PhysRevB.85.214114 [45] LIU H Y, ZHU L, CUI W W, et al. Room-temperature structures of solid hydrogen at high pressures [J]. The Journal of Chemical Physics, 2012, 137(7): 074501. doi: 10.1063/1.4745186 [46] MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase V of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701 [47] MORALES M A, MCMAHON J M, PIERLEONI C, et al. Towards a predictive first-principles description of solid molecular hydrogen with density functional theory [J]. Physical Review B, 2013, 87(18): 184107. doi: 10.1103/PhysRevB.87.184107 [48] AZADI S, ACKLAND G J. The role of van der Waals and exchange interactions in high-pressure solid hydrogen [J]. Physical Chemistry Chemical Physics, 2017, 19(32): 21829–21839. doi: 10.1039/C7CP03729E [49] CLAY R C, MCMINIS J, MCMAHON J M, et al. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo [J]. Physical Review B, 2014, 89(18): 184106. doi: 10.1103/PhysRevB.89.184106 [50] MORALES M A, PIERLEONI C, SCHWEGLER E, et al. Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(29): 12799–12803. doi: 10.1073/pnas.1007309107 [51] LI X Z, WALKER B, PROBERT M I J, et al. Classical and quantum ordering of protons in cold solid hydrogen under megabar pressures [J]. Journal of Physics: Condensed Matter, 2013, 25(8): 085402. doi: 10.1088/0953-8984/25/8/085402 [52] DRUMMOND N D, MONSERRAT B, LLOYD-WILLIAMS J H, et al. Quantum Monte Carlo study of the phase diagram of solid molecular hydrogen at extreme pressures [J]. Nature Communications, 2015, 6(1): 7794. doi: 10.1038/ncomms8794 [53] CHEN J, REN X G, LI X Z, et al. On the room-temperature phase diagram of high pressure hydrogen: an ab initio molecular dynamics perspective and a diffusion Monte Carlo study [J]. The Journal of Chemical Physics, 2014, 141(2): 024501. doi: 10.1063/1.4886075 [54] AZADI S, FOULKES W M C, KÜHNE T D. Quantum Monte Carlo study of high pressure solid molecular hydrogen [J]. New Journal of Physics, 2013, 15(11): 113005. doi: 10.1088/1367-2630/15/11/113005 [55] HAZEN R M, MAO H K, FINGER L W, et al. Single-crystal X-ray diffraction of n-H2 at high pressure [J]. Physical Review B, 1987, 36(7): 3944–3947. doi: 10.1103/PhysRevB.36.3944 [56] MAO H K, BELL P M. Observations of hydrogen at room temperature (25 ℃) and high pressure (to 500 kilobars) [J]. Science, 1979, 203(4384): 1004–1006. doi: 10.1126/science.203.4384.1004 [57] MAO H K, JEPHCOAT A P, HEMLEY R J, et al. Synchrotron X-ray diffraction measurements of single-crystal hydrogen to 26.5 gigapascals [J]. Science, 1988, 239(4844): 1131–1134. doi: 10.1126/science.239.4844.1131 [58] LOUBEYRE P, LETOULLEC R, HAUSERMANN D, et al. X-ray diffraction and equation of state of hydrogen at megabar pressures [J]. Nature, 1996, 383(6602): 702–704. doi: 10.1038/383702a0 [59] AKAHAMA Y, NISHIMURA M, KAWAMURA H, et al. Evidence from X-ray diffraction of orientational ordering in phase Ⅲ of solid hydrogen at pressures up to 183 GPa [J]. Physical Review B, 2010, 82(6): 060101. doi: 10.1103/PhysRevB.82.060101 [60] GONCHARENKO I, LOUBEYRE P. Neutron and X-ray diffraction study of the broken symmetry phase transition in solid deuterium [J]. Nature, 2005, 435(7046): 1206–1209. doi: 10.1038/nature03699 [61] BOEHLER R, GUTHRIE M, MOLAISON J J, et al. Large-volume diamond cells for neutron diffraction above 90 GPa [J]. High Pressure Research, 2013, 33(3): 546–554. doi: 10.1080/08957959.2013.823197 [62] JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9 [63] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8 [64] JI C. Crystallography of low z material at ultrahigh pressure: case study on solid hydrogen [J]. Matter and Radiation at Extremes(In Press), 2020. [65] LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115 [66] WANG L, DING Y, YANG W G, et al. Nanoprobe measurements of materials at megabar pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(14): 6140–6145. doi: 10.1073/pnas.1001141107 [67] MEZOUAR M, FAURE P, CRICHTON W, et al. Multichannel collimator for structural investigation of liquids and amorphous materials at high pressures and temperatures [J]. Review of Scientific Instruments, 2002, 73(10): 3570–3574. doi: 10.1063/1.1505104 [68] YAOITA K, KATAYAMA Y, TSUJI K, et al. Angle-dispersive diffraction measurement system for high-pressure experiments using a multichannel collimator [J]. Review of Scientific Instruments, 1997, 68(5): 2106–2110. doi: 10.1063/1.1148103 [69] WECK G, GARBARINO G, LOUBEYRE P, et al. Liquid hydrogen structure factor to 5 GPa and evidence of a crossover between two density evolutions [J]. Physical Review B, 2015, 91(18): 180204. doi: 10.1103/PhysRevB.91.180204 [70] PRESCHER C, PRAKAPENKA V B, STEFANSKI J, et al. Beyond sixfold coordinated Si in SiO2 glass at ultrahigh pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(38): 10041–10046. doi: 10.1073/pnas.1708882114 [71] DUBROVINSKY L, DUBROVINSKAIA N, KATSNELSON M I. No evidence of isostructural electronic transitions in compressed hydrogen [EB/OL]. arXiv: 1910.10772, [2020-03-03]. https://arxiv.org/abs/1910.10772. [72] AKAHAMA Y, KAWAMURA H, HIRAO N, et al. Raman scattering and X-ray diffraction experiments for phase Ⅲ of solid hydrogen [J]. Journal of Physics: Conference Series, 2010, 215(1): 012056. [73] ANDERSON O L, ISAAK D G, YAMAMOTO S. Anharmonicity and the equation of state for gold [J]. Journal of Applied Physics, 1989, 65(4): 1534–1543. doi: 10.1063/1.342969 [74] SPEZIALE S, ZHA C S, DUFFY T S, et al. Quasi-hydrostatic compression of magnesium oxide to 52 GPa: implications for the pressure-volume-temperature equation of state [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 515–528. doi: 10.1029/2000JB900318 [75] AKAHAMA Y, KAWAMURA H. Pressure calibration of diamond anvil Raman gauge to 410 GPa [J]. Journal of Physics: Conference Series, 2010, 215(1): 012195. doi: 10.1088/1742-6596/215/1/012195 [76] HOWIE R T, GREGORYANZ E, GONCHAROV A F. Hydrogen (deuterium) vibron frequency as a pressure comparison gauge at multi-Mbar pressures [J]. Journal of Applied Physics, 2013, 114(7): 073505. doi: 10.1063/1.4818606 [77] AKAHAMA Y, MIZUKI Y, NAKANO S, et al. Raman scattering and X-ray diffraction studies on phase Ⅲ of solid hydrogen [J]. Journal of Physics: Conference Series, 2017, 950(4): 042060. doi: 10.1088/1742-6596/950/4/042060 [78] JENEI Z, O’BANNON E F, WEIR S T, et al. Single crystal toroidal diamond anvils for high pressure experiments beyond 5 megabar [J]. Nature Communications, 2018, 9(1): 3563. doi: 10.1038/s41467-018-06071-x [79] DEWAELE A, LOUBEYRE P, OCCELLI F, et al. Toroidal diamond anvil cell for detailed measurements under extreme static pressures [J]. Nature Communications, 2018, 9(1): 2913. doi: 10.1038/s41467-018-05294-2 [80] DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 3(10): 1163. doi: 10.1038/ncomms2160