鸟撞冲击下TC4钛合金平板的变形和破坏

贾林 李从富 邹学韬 姚小虎

贾林, 李从富, 邹学韬, 姚小虎. 鸟撞冲击下TC4钛合金平板的变形和破坏[J]. 高压物理学报, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515
引用本文: 贾林, 李从富, 邹学韬, 姚小虎. 鸟撞冲击下TC4钛合金平板的变形和破坏[J]. 高压物理学报, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515
JIA Lin, LI Congfu, ZOU Xuetao, YAO Xiaohu. Deformation and Destruction of TC4 Titanium Alloy Plate under the Bird Impact[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515
Citation: JIA Lin, LI Congfu, ZOU Xuetao, YAO Xiaohu. Deformation and Destruction of TC4 Titanium Alloy Plate under the Bird Impact[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044102. doi: 10.11858/gywlxb.20200515

鸟撞冲击下TC4钛合金平板的变形和破坏

doi: 10.11858/gywlxb.20200515
基金项目: 国家自然科学基金(11672110,11472110)
详细信息
    作者简介:

    贾 林(1988-),男,硕士,工程师,主要从事发动机强度试验技术研究. E-mail:jialin20060598@126.com

    通讯作者:

    姚小虎(1974-),男,博士,教授,主要从事爆炸与冲击动力学研究. E-mail:yaoxh@scut.edu.cn

  • 中图分类号: O347.3

Deformation and Destruction of TC4 Titanium Alloy Plate under the Bird Impact

  • 摘要: 为了分析航空用TC4钛合金板材在鸟撞冲击下的动态响应,通过3D-DIC动态变形场测试技术,研究了鸟撞冲击过程中TC4钛合金平板变形场,并基于显式有限元分析软件ABAQUS,建立了鸟撞数值计算模型。将考虑拉压不对称性的修正von Mises屈服准则引入TC4钛合金材料的Johnson-Cook动态本构模型和动态损伤模型中,采用光滑粒子流体动力学方法(SPH)建立了鸟体模型。数值计算和鸟撞实验的对比结果表明,计算应变与实验结果吻合很好,验证了TC4钛合金鸟撞冲击数值分析模型的合理性和可靠性。

     

  • 图  实验装置示意图

    Figure  1.  Schematic of experimental apparatus

    图  高速摄影机布局

    Figure  2.  High speed camera arrangement

    图  靶板尺寸

    Figure  3.  Size of target board

    图  149、167和180 m/s的鸟撞实验结果

    Figure  4.  Results of bird strike experiments at the speed of 149, 167 and 180 m/s

    图  TC4钛合金平板破坏照片

    Figure  5.  Failure of TC4 titanium alloy plate

    图  鸟弹的几何尺寸

    Figure  6.  Geometry of bird ball

    图  鸟撞数值计算模型

    Figure  7.  Numerical model of bird strike

    图  观测点布局

    Figure  8.  Distribution of observation points

    图  149 m/s鸟撞等效应力云图

    Figure  9.  Equivalent stress nephograms of bird impacting with the velocity of 149 m/s

    图  10  TC4钛合金平板鸟撞变形结果

    Figure  10.  Deformation of TC4 titanium alloy plate under the bird impact

    图  11  180 m/s工况下计算得到的TC4钛合金平板破坏过程

    Figure  11.  Failure process of TC4 titanium alloy plate calculated at 180 m/s

    图  12  位移-时间曲线的计算和实验结果对比

    Figure  12.  Comparison of calculated displacement-time curves with experimental results

    图  13  应变-时间曲线的计算与实验结果对比

    Figure  13.  Comparison of calculated strain-time curves with experimental results

    表  1  鸟体材料参数

    Table  1.   Material parameters of bird body

    Density/(kg·m−3Elastic modulus/GPaPoisson’s ratioYield stress/MPaFailure strainTangent modulus/MPa
    9280.0680.490.691.255
    下载: 导出CSV

    表  2  TC4钛合金材料参数[10-11]

    Table  2.   Parameters of TC4 titanium alloy[10-11]

    ρ/(g·cm−3)μTm/KA/MPaB/MPanCm
    4.4300.331 878106010900.8840.01171.1
    E/GPa${\dot \varepsilon _{{0}}}$/s−1D1D2D3D4D5
    1354 × 10−4−0.0900.2700.4800.0143.870
    下载: 导出CSV

    表  3  TC4钛合金平板鸟撞最大位移

    Table  3.   Maximum displacement of titanium alloy plate impacted by a bird

    Velocity/(m·s−1)MethodMaximum displacement/mm
    S1S2S3S4S5S6
    149Sim.655136645523
    Exp.686038635325
    167Sim.756048766527
    Exp.805947766324
    180Sim.1191016311810354
    Exp.11790531039550
    下载: 导出CSV
  • [1] 黄旭, 朱知寿, 王红红. 先进航空钛合金材料与应用 [M]. 北京: 国防工业出版社, 2012.

    HUANG X, ZHU Z S, WANG H H. Advanced aeronautical titanium alloys and applications [M]. Beijing: National Defense Industry Press, 2012.
    [2] GUIDA M, MARULO F, MEO M, et al. SPH-Lagrangian study of bird impact on leading edge wing [J]. Composite Structures, 2011, 93(3): 1060–1071. doi: 10.1016/j.compstruct.2010.10.001
    [3] DE VUYST T, VIGNJEVIC R, CAMPBELL J C. Coupling between meshless and finite element methods [J]. International Journal of Impact Engineering, 2005, 31(8): 1054–1064. doi: 10.1016/j.ijimpeng.2004.04.017
    [4] 张鼎逆, 上官倩芡, 刘富. 基于SPH方法的LY12-CZ铝合金平板鸟撞模型 [J]. 江苏大学学报: 自然科学版, 2016, 37(4): 418–422. doi: 10.3969/j.issn.1671-7775.2016.04.008

    ZHANG D N, SHANGGUAN Q Q, LIU F. Model of bird impact on LY12-CZ aluminum alloy plate based on SPH [J]. Journal of Jiangsu University (Natural Science Edition), 2016, 37(4): 418–422. doi: 10.3969/j.issn.1671-7775.2016.04.008
    [5] 刘军, 李玉龙, 刘元镛. 基于SPH方法的叶片鸟撞数值模拟研究 [J]. 振动与冲击, 2008, 27(9): 90–93. doi: 10.3969/j.issn.1000-3835.2008.09.022

    LIU J, LI Y L, LIU Y Y. Numerical simulation study of bird-impact on a blade using SPH method [J]. Journal of Vibration and Shock, 2008, 27(9): 90–93. doi: 10.3969/j.issn.1000-3835.2008.09.022
    [6] 刘富, 张嘉振, 童明波, 等. 2024-T3铝合金动力学实验及其平板鸟撞动态响应分析 [J]. 振动与冲击, 2014, 33(4): 113–118. doi: 10.3969/j.issn.1000-3835.2014.04.021

    LIU F, ZHANG J Z, TONG M B, et al. Dynamic tests and bird impact dynamic response analysis for a 2024-T3 aluminum alloy plate [J]. Journal of Vibration and Shock, 2014, 33(4): 113–118. doi: 10.3969/j.issn.1000-3835.2014.04.021
    [7] LIU J, LI Y L, GAO X S. Bird strike on a flat plate: experiments and numerical simulations [J]. International Journal of Impact Engineering, 2014, 70: 21–37. doi: 10.1016/j.ijimpeng.2014.03.006
    [8] 姚小虎, 韩强, 赵隆茂, 等. 飞机圆弧风挡的抗鸟撞击问题研究 [J]. 华南理工大学学报(自然科学版), 2007, 35(2): 6–12. doi: 10.3321/j.issn:1000-565X.2007.02.002

    YAO X H, HAN Q, ZHAO L M, et al. Investigation into arc windshield of aircraft subjected to bird impact [J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(2): 6–12. doi: 10.3321/j.issn:1000-565X.2007.02.002
    [9] 邹学韬, 张晓晴, 姚小虎. 压剪载荷作用下TB6钛合金的动态力学性能 [J]. 高压物理学报, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713

    ZOU X T, ZHANG X Q, YAO X H. Dynamic behavior of TB6 titanium alloy under shear-compression loading [J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024206. doi: 10.11858/gywlxb.20190713
    [10] 惠旭龙, 牟让科, 白春玉, 等. TC4钛合金动态力学性能及本构模型研究 [J]. 振动与冲击, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024

    HUI X L, MU R K, BAI C Y, et al. Dynamic mechanical property and constitutive model for TC4 titanium alloy [J]. Journal of Vibration and Shock, 2016, 35(22): 161–168. doi: 10.13465/j.cnki.jvs.2016.22.024
    [11] KAY G. Failure modeling of titanium 6Al-4V and aluminum 2024-T3 with the Johnson-Cook material model: DOT/FAA/AR-03/57 [R]. Washington: U.S. Department of Transportation, Federal Aviation Administration, 2003: 1–11.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  8424
  • HTML全文浏览量:  3022
  • PDF下载量:  46
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-03-17

目录

    /

    返回文章
    返回