高导热金刚石/铝复合材料的高温高压制备

侯领 沈维霞 房超 张壮飞 张跃文 王倩倩 陈良超 贾晓鹏

侯领, 沈维霞, 房超, 张壮飞, 张跃文, 王倩倩, 陈良超, 贾晓鹏. 高导热金刚石/铝复合材料的高温高压制备[J]. 高压物理学报, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
引用本文: 侯领, 沈维霞, 房超, 张壮飞, 张跃文, 王倩倩, 陈良超, 贾晓鹏. 高导热金刚石/铝复合材料的高温高压制备[J]. 高压物理学报, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
HOU Ling, SHEN Weixia, FANG Chao, ZHANG Zhuangfei, ZHANG Yuewen, WANG Qianqian, CHEN Liangchao, JIA Xiaopeng. High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
Citation: HOU Ling, SHEN Weixia, FANG Chao, ZHANG Zhuangfei, ZHANG Yuewen, WANG Qianqian, CHEN Liangchao, JIA Xiaopeng. High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514

高导热金刚石/铝复合材料的高温高压制备

doi: 10.11858/gywlxb.20200514
基金项目: 国家自然科学基金(11704340,11804305);河南省科技攻关项目(202102210198)
详细信息
    作者简介:

    侯 领(1992-),男,硕士研究生,主要从事高温高压合成研究. E-mail:1262310078@qq.com

    通讯作者:

    张壮飞(1985-),男,博士,讲师,主要从事高温高压合成研究. E-mail:zhangzf@zzu.edu.cn

    陈良超(1989-),男,博士,讲师,主要从事高温高压合成研究. E-mail:chenlc@zzu.edu.cn

  • 中图分类号: O521.3

High Thermal Conductivity of Diamond/Al Composites via High Pressure and High Temperature Sintering

  • 摘要: 以纯铝为基体,使用体积分数为50%的200 μm镀钛金刚石为填充材料,利用高温高压粉末冶金法在压力3 GPa、温度700 ℃条件下烧结10 min得到热导率为529 W/(m·K)的高导热金刚石/铝复合材料。通过光学显微镜和X射线衍射对镀钛金刚石的形貌和物性进行表征,并利用激光导热仪、扫描电镜和热膨胀仪对制备的金刚石/铝复合材料进行性能测试。研究发现,使用放电等离子体烧结制备的镀钛金刚石镀层成分主要是单质钛,并伴有少量碳化钛生成。通过对比在相同制备条件下没有经过镀覆处理的金刚石发现,使用镀钛金刚石能够有效提高金刚石/铝复合材料的热导率。同时,高温高压法能够制备全密度的金刚石/铝复合材料,有效提高铝基体与金刚石的界面结合,减少界面空隙,进而有效提高复合材料的热导率。相比真空热压、放电等离子体烧结、气压熔渗等常规方式,高温高压粉末冶金制备方式具有样品制备周期短(数分钟)的特点。此项研究有助于拓宽高导热复合材料的制备方式,同时能够扩大国内六面顶压机的产品种类,为其他金属基体导热复合材料的制备提供技术支持。

     

  • 图  金刚石(a)、铝粉(b)和钛粉(c)的外观形貌

    Figure  1.  Morphology of diamond particles (a),aluminum powders (b) and titanium powders (c)

    图  金刚石颗粒放电等离子体烧结30 min前(a)、后(b)对比

    Figure  2.  Optical image comparison before (a) and after (b) diamond particles treatment for 30 min by SPS

    图  金刚石/铝复合材料实验组装示意图:(a)高压组装块实物,(b)高压组装块示意图,(c)高压设备腔体示意图

    Figure  3.  Sample assembly for diamond/Al composites under high pressure conditions: (a) high pressure cell for composites fabrication, (b) assembly schematic diagram, (c) schematic diagram of high pressure apparatus

    图  镀钛金刚石的X射线衍射图谱

    Figure  4.  XRD pattern of Ti-coated diamond particles

    图  金刚石颗粒形貌:(a)原材料金刚石,(b)镀钛金刚石,(c)镀钛金刚石扫描电镜图像,(d)镀钛金刚石表面局部放大图像

    Figure  5.  Morphology of diamond particles: (a) raw diamond,(b) Ti-coated diamond,(c) SEM of Ti-coated diamond,(d) the surface of Ti-coated diamond

    图  金刚石/铝复合材料断裂面扫描电镜图像:未镀钛金刚石(a)~(b),镀钛金刚石(c)~(d)

    Figure  6.  SEM images of fracture surfaces of the diamond/Al composites with diamond of un-coated (a),(b)and Ti-coated (c),(d)

    图  镀钛金刚石/铝复合材料界面扫描电镜结果和元素分布:(a)界面结合部位,(b)铝,(c)金刚石,(d)钛

    Figure  7.  SEM images of the interface between diamond particles and Al matrix in the diamond/Al composites with Ti-coated on diamond particles:(a) interface area, (b) Al, (c) diamond, (d) Ti

    图  金刚石/铝复合材料的热学性能:(a)热扩散系数,(b)热导率

    Figure  8.  Thermal properties of the diamond/Al composites: (a) thermal diffusion coefficient,(b) thermal conductivity

    图  未镀钛和镀钛制备的金刚石/铝复合材料的变温伸长率(a)和热膨胀系数(b)

    Figure  9.  Relative elongations (a)and CTEs (b)of diamond/Al composites reinforced with uncoated and Ti-coated diamond particles

    表  1  金刚石/铝复合材料的密度和致密度

    Table  1.   Density and relative density of diamond/Al composites

    Diamond typeDensity of composites/(g·cm−3)Relative density of composites/%
    Raw3.0698.40
    Ti-coated3.11100.00
    下载: 导出CSV
  • [1] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics [J]. Materials Today, 2014, 17(4): 163–174. doi: 10.1016/j.mattod.2014.04.003
    [2] ZWEBEN C. Advances in composite materials for thermal management in electronic packaging [J]. JOM, 1998, 50(6): 47–51. doi: 10.1007/s11837-998-0128-6
    [3] JOHNSON W B, SONUPARLAK B. Diamond/Al metal matrix composites formed by the pressureless metal infiltration process [J]. Journal of Materials Research, 1993, 8(5): 1169–1173. doi: 10.1557/JMR.1993.1169
    [4] YANG W L, PENG K, ZHOU L P, et al. Finite element simulation and experimental investigation on thermal conductivity of diamond/aluminium composites with imperfect interface [J]. Computational Materials Science, 2014, 83: 375–380. doi: 10.1016/j.commatsci.2013.11.059
    [5] ABYZOV A M, KIDALOV S V, SHAKHOV F M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application [J]. Applied Thermal Engineering, 2012, 48: 72–80. doi: 10.1016/j.applthermaleng.2012.04.063
    [6] HE J S, WANG X T, ZHANG Y, et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method [J]. Composites Part B: Engineering, 2015, 68: 22–26. doi: 10.1016/j.compositesb.2014.08.023
    [7] MA S D, ZHAO N Q, SHI C S, et al. Mo2C coating on diamond: different effects on thermal conductivity of diamond/Al and diamond/Cu composites [J]. Applied Surface Science, 2017, 402: 372–383. doi: 10.1016/j.apsusc.2017.01.078
    [8] TAN Z Q, LI Z Q, FAN G L, et al. Fabrication of diamond/aluminum composites by vacuum hot pressing: process optimization and thermal properties [J]. Composites Part B: Engineering, 2013, 47: 173–180. doi: 10.1016/j.compositesb.2012.11.014
    [9] MIZUUCHI K, INOUE K, AGARI Y, et al. Bimodal and monomodal diamond particle effect on the thermal properties of diamond-particle-dispersed Al-matrix composite fabricated by SPS [J]. Microelectronics Reliability, 2014, 54(11): 2463–2470. doi: 10.1016/j.microrel.2014.04.006
    [10] CHE Z F, WANG Q X, WANG L H, et al. Interfacial structure evolution of Ti-coated diamond particle reinforced Al matrix composite produced by gas pressure infiltration [J]. Composites Part B: Engineering, 2017, 113: 285–290. doi: 10.1016/j.compositesb.2017.01.047
    [11] ZHANG Y, LI W J, ZHAO L L, et al. Optimisation of high thermal conductivity Al/diamond composites produced by gas pressure infiltration by controlling infiltration temperature and pressure [J]. Journal of Materials Science, 2015, 50(2): 688–696. doi: 10.1007/s10853-014-8628-y
    [12] FANG C, SHEN W X, ZHANG Y W, et al. Si doping effects on the growth of large single-crystal diamond in a Ni-based metal catalyst system under high pressure and high temperature [J]. Crystal Growth & Design, 2019, 19(7): 3955–3961. doi: 10.1021/acs.cgd.9b00355
    [13] ZHANG Z F, JIA X P, LIU X B, et al. Synthesis and characterization of a single diamond crystal with a high nitrogen concentration [J]. Chinese Physics B, 2012, 21(3): 038103. doi: 10.1088/1674-1056/21/3/038103
    [14] FANG C, ZHANG Y W, SHEN W X, et al. Synthesis and characterization of HPHT large single-crystal diamonds under the simultaneous influence of oxygen and hydrogen [J]. CrystEngComm, 2017, 19(38): 5727–5734. doi: 10.1039/C7CE01349C
    [15] CHANG R, ZANG J B, WANG Y H, et al. Study of Ti-coated diamond grits prepared by spark plasma coating [J]. Diamond and Related Materials, 2017, 77: 72–78. doi: 10.1016/j.diamond.2017.06.004
    [16] EKIMOVE A, SUETIN N V, POPOVICH A F, et al. Thermal conductivity of diamond composites sintered under high pressures [J]. Diamond and Related Materials, 2008, 17(4/5): 838–843. doi: 10.1016/j.diamond.2007.12.051
    [17] KIDALOV S V, SHAKHOV F M, VUL A Y. Thermal conductivity of sintered nanodiamonds and microdiamonds [J]. Diamond and Related Materials, 2008, 17(4/5): 844–847. doi: 10.1016/j.diamond.2008.01.091
    [18] EKIMOVE A, SUETINN V, POPOVICH A F, et al. Effect of microstructure and grain size on the thermal conductivity of high-pressure-sintered diamond composites [J]. Inorganic Materials, 2008, 44(3): 224–229. doi: 10.1134/S0020168508030035
    [19] YOSHIDA K, MORIGAMI H. Thermal properties of diamond/copper composite material [J]. Microelectronics Reliability, 2004, 44(2): 303–308. doi: 10.1016/S0026-2714(03)00215-4
    [20] HE J S, ZHANG H L, ZHANG Y, et al. Effect of boron addition on interface microstructure and thermal conductivity of Cu/diamond composites produced by high temperature-high pressure method [J]. Physica Status Solidi A, 2014, 211(3): 587–594. doi: 10.1002/pssa.201330237
    [21] CHEN H, JIA C C, LI S J. Effect of sintering parameters on the microstructure and thermal conductivity of diamond/Cu composites prepared by high pressure and high temperature infiltration [J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(2): 180–186. doi: 10.1007/s12613-013-0711-x
    [22] CHU K, JIA C C, LIANG X B, et al. Modeling the thermal conductivity of diamond reinforced aluminium matrix composites with inhomogeneous interfacial conductance [J]. Materials & Design, 2009, 30(10): 4311–4316. doi: 10.1016/j.matdes.2009.04.019
    [23] LIANG X B, JIA C C, CHU K, et al. Thermal conductivity and microstructure of Al/diamond composites with Ti-coated diamond particles consolidated by spark plasma sintering [J]. Journal of Composite Materials, 2012, 46(9): 1127–1136. doi: 10.1177/0021998311413689
    [24] YAMAMOTO Y, IMAI T, TANABE K, et al. The measurement of thermal properties of diamond [J]. Diamond and Related Materials, 1997, 6(8): 1057–1061. doi: 10.1016/S0925-9635(96)00772-8
    [25] TWITCHEN D J, PICKLES C S J, COE S E, et al. Thermal conductivity measurements on CVD diamond [J]. Diamond and Related Materials, 2001, 10(3/4/5/6/7): 731–735. doi: 10.1016/S0925-9635(00)00515-X
    [26] STONER R J, MARIS H J. Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K [J]. Physical Review B, 1993, 48(22): 16373–16387. doi: 10.1103/PhysRevB.48.16373
    [27] 王平平. 金刚石/铝复合材料的界面结构与导热性能 [D]. 哈尔滨: 哈尔滨工业大学, 2017.

    WANG P P. Interface microstructure and thermal properties of diamond particles reinforced Al matrix composites [D]. Harbin: Harbin Institute of Technology, 2017.
    [28] 刘永正. 金刚石/铝复合材料影响因素研究 [J]. 超硬材料工程, 2009, 21(5): 15–17. doi: 10.3969/j.issn.1673-1433.2009.05.005

    LIU Y Z. Research on influencing factors of diamond-aluminium composites [J]. Superhard Material Engineering, 2009, 21(5): 15–17. doi: 10.3969/j.issn.1673-1433.2009.05.005
    [29] 郭静, 孙久娜, 孙璐, 等. 铝-金刚石双相连续导热复合材料的制备 [J]. 粉末冶金工业, 2010, 20(3): 17–20. doi: 10.3969/j.issn.1006-6543.2010.03.004

    GUO J, SUN J N, SUN L, et al. Preparation of Al/diamond composite with consecutive phases [J]. Powder Metallurgy Industry, 2010, 20(3): 17–20. doi: 10.3969/j.issn.1006-6543.2010.03.004
    [30] 刘永正, 崔岩. 超高导热金刚石/铝复合材料研究 [C]//第七届中国功能材料及其应用学术会议论文集. 长沙: 中国仪器仪表学会, 2010: 439–441.
    [31] ARAI S, UEDA M. Fabrication of high thermal conductivity Cu/diamond composites at ambient temperature and pressure [J]. AIP Advances, 2019, 9(8): 085309. doi: 10.1063/1.5111416
    [32] 王新宇, 于家康, 朱晓敏. 镀TiC金刚石/铝复合材料的热膨胀性能 [J]. 特种铸造及有色合金, 2011, 31(11): 1046–1049. doi: 10.3870/tzzz.2011.11.019

    WANG X Y, YU J K, ZHU X M. Thermal expansion behevior of TiC-coated diamond/Al composites [J]. Special Casting & Nonferrous Alloys, 2011, 31(11): 1046–1049. doi: 10.3870/tzzz.2011.11.019
    [33] 王一鸣. 金刚石/铝复合材料性能及其影响因素研究 [D]. 北京: 北方工业大学, 2019.

    WANG Y M. Research on properties and influencing factors of diamond/aluminum composites [D]. Beijing: North China University of Technology, 2019.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  6213
  • HTML全文浏览量:  2546
  • PDF下载量:  51
出版历程
  • 收稿日期:  2020-02-24
  • 修回日期:  2020-03-03

目录

    /

    返回文章
    返回