应力波在散体颗粒中的传播规律

王秉相 程普锋 郑宇轩 周风华

王秉相, 程普锋, 郑宇轩, 周风华. 应力波在散体颗粒中的传播规律[J]. 高压物理学报, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508
引用本文: 王秉相, 程普锋, 郑宇轩, 周风华. 应力波在散体颗粒中的传播规律[J]. 高压物理学报, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508
WANG Bingxiang, CHENG Pufeng, ZHENG Yuxuan, ZHOU Fenghua. Attenuation Law of Stress Wave in Granular Particles[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508
Citation: WANG Bingxiang, CHENG Pufeng, ZHENG Yuxuan, ZHOU Fenghua. Attenuation Law of Stress Wave in Granular Particles[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044202. doi: 10.11858/gywlxb.20200508

应力波在散体颗粒中的传播规律

doi: 10.11858/gywlxb.20200508
基金项目: 国家自然科学基金(11390361)
详细信息
    作者简介:

    王秉相(1995-),男,硕士研究生,主要从事冲击动力学研究. E-mail:wbxbob@163.com

    通讯作者:

    郑宇轩(1986-),男,博士,副教授,主要从事冲击动力学研究. E-mail:zhengyuxuan@nbu.edu.cn

  • 中图分类号: O347.4

Attenuation Law of Stress Wave in Granular Particles

  • 摘要: 脆性散体颗粒在受到冲击加载时,会对应力波传播产生显著的衰减作用。基于离散元颗粒流软件PFC3D建立了散体颗粒模型,通过不同加载速率下的数值模拟,研究应力波在散体颗粒中的传播规律和影响因素。结果表明:在冲击加载下,散体颗粒中传播的应力波峰值整体呈指数型衰减,随着传播距离的增大,应力波衰减程度逐渐减小,颗粒破碎程度也逐渐减小;应力波在散体颗粒中传播时会发生显著的波形弥散,并且应力波波长越短,传播过程中的衰减越大;应力波衰减的率相关性本质上是由散体颗粒的冲击破碎引起的,加载速度越大,颗粒破坏程度越大,应力波的衰减程度越大,而在颗粒不破碎的情况下,加载速度增大时,应力波的衰减程度变化不明显。

     

  • 图  簇颗粒的生成过程

    Figure  1.  Generation process of cluster particle

    图  石英砂压缩曲线

    Figure  2.  Compression curve of quartz sand

    图  散体颗粒模型及测量球位置

    Figure  3.  Particle model and positions of the measurement balls

    图  试件不同位置的应力波波形

    Figure  4.  Stress wave forms at different positions of the test piece

    图  不同直径的测量球对应力波衰减的影响

    Figure  5.  Effect of measuring ball diameter on the attenuationof stress waves

    图  应力波衰减规律及颗粒破碎

    Figure  6.  Attenuation law of the stress wave and the image of particle fragmentation

    图  不同区域拟合曲线无量纲传播距离

    Figure  7.  Dimensionless propagation distance of fitted curves in different regions

    图  应力波在颗粒破碎/不破碎时的衰减规律

    Figure  8.  Attenuation laws of stress wave when particles are broken/unbroken

    图  颗粒破碎程度随衰减因子β的变化曲线

    Figure  9.  Degree of particle fragmentation with respect to the attenuation factor β

    图  10  不同脉宽的应力波传播规律

    Figure  10.  Propagation of stress waves with different pulse widths

    图  11  不同脉宽的应力波峰值拟合曲线

    Figure  11.  Curves of stress wave peaks with different pulse widths

    图  12  不同加载速度下可破碎颗粒的峰值应力拟合曲线

    Figure  12.  Peak stress fitting curves of the crushable particlesat different loading velocities

    图  13  不同加载速度下不可破碎颗粒的峰值应力拟合曲线

    Figure  13.  Peak stress fitting curves of the uncrushable particlesat different loading velocities

    图  14  衰减因子、黏结键破碎比与加载速度的关系

    Figure  14.  Relationship between attenuation factor, bond breaking ratio and loading velocity

    表  1  Flat-Joint模型微观参数

    Table  1.   Micro-parameters of the Flat-Joint model

    ModelEmod/GPaFj-Kn/GPaFj-Ks/GPaFj-Coh/GPaFj-Ten/GPaDamp
    Flat-Joint505.25 × 1059.37 × 1050.20.050.15
    下载: 导出CSV
  • [1] JAEGER H M, NAGEL S R. Granular solids, liquids, and gases [J]. Reviews of Modern Physics, 1996, 68(4): 1259–1273. doi: 10.1103/RevModPhys.68.1259
    [2] 张家铭, 汪稔, 张阳明, 等. 土体颗粒破碎研究进展 [J]. 岩土力学, 2003(S2): 661–665.

    ZHANG J M, WANG R, ZHANG Y M, et al. Advance in studies of soil grain crush [J]. Rock and Soil Mechanics, 2003(S2): 661–665.
    [3] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 1985: 45–47.

    WANG L L. Foundation of stress waves [M]. Beijing: National Defense Industry Press, 1985: 45–47.
    [4] 王肖钧. 分层人防工程防护结构对地下爆炸波的阻尼、耗散和导向作用研究 [R]. 合肥: 中国科学技术大学近代力学系, 2008.

    WANG X J. Research on the damping, dissipation and guiding effect of layered civil air defense engineering structure on underground explosion waves [R]. Hefei: University of Science and Technology of China, 2008.
    [5] LI J C, MA G W. Experimental study of stress wave propagation across a filled rock joint [J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(3): 471–478. doi: 10.1016/j.ijrmms.2008.11.006
    [6] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究 [J]. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703

    JI S Y, LI P F, CHEN X D. Experiments on shock-absorbing capacity of granular matter under impact load [J]. Acta Physica Sinica, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [7] 赵跃堂, 郑守军, 郑大亮, 等. 爆炸波在饱和土介质中传播时压力变化规律的试验研究 [J]. 防灾减灾工程学报, 2004, 24(1): 60–65.

    ZHAO Y T, ZHENG S J, ZHENG D L, et al. Experimental investigation on pressure variation during explosion wave propagation in saturated soils [J]. Journal of Disaster Prevention and Mitigation Engineering, 2004, 24(1): 60–65.
    [8] 赵凯. 分层防护层对爆炸波的衰减和弥散作用研究 [D]. 合肥: 中国科学技术大学, 2007: 25–40.

    ZHAO K. The attenuation and dispersion effects on explosive wave of layered protective engineering [D]. Hefei: University of Science and Technology of China, 2007: 25–40.
    [9] 魏久淇, 吕亚茹, 刘国权, 等. 钙质砂一维冲击响应及吸能特性试验 [J]. 岩土力学, 2019, 40(1): 191–198.

    WEI J Q, LÜ Y R, LIU G Q, et al. One-dimensional impact responses and energy absorption of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(1): 191–198.
    [10] YU X, CHEN L, FANG Q, et al. Determination of attenuation effects of coral sand on the propagation of impact-induced stress wave [J]. International Journal of Impact Engineering, 2019, 125(1): 63–82.
    [11] 祁原, 黄俊杰, 陈明祥. 可破碎颗粒体在动力载荷下的耗能特性 [J]. 力学学报, 2015, 47(2): 254–259.

    QI Y, HUANG J J, CHEN M X. Energy dissipation characteristics of crushable granules under dynamic excitations [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 254–259.
    [12] 郑文. 颗粒物质体系复杂动力学行为研究 [D]. 合肥: 中国科学技术大学, 2013: 17–36.

    ZHENG W. A study on complex dynamic properties of granular material [D]. Hefei: University of Science and Technology of China, 2013: 17–36.
    [13] 黄俊宇. 冲击载荷下脆性颗粒材料多尺度变形破碎特性研究 [D]. 合肥: 中国科学技术大学, 2016: 19–40.

    HUANG J Y. Dynamic multiscale deformation behavior and particle-breakage properties of granular materials subjected to impact loading [D]. Hefei: University of Science and Technology of China, 2016: 19–40.
    [14] 王刚, 叶沁果, 查京京. 珊瑚礁砂砾料力学行为与颗粒破碎的试验研究 [J]. 岩土工程学报, 2018, 40(5): 802–810. doi: 10.11779/CJGE201805004

    WANG G, YE Q G, ZHA J J. Experimental study on mechanical behavior and particle crushing of coral sand-gravel fill [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 802–810. doi: 10.11779/CJGE201805004
    [15] 张科芬, 张升, 滕继东, 等. 颗粒破碎的三维离散元模拟研究 [J]. 岩土力学, 2017, 38(7): 2119–2127.

    ZHANG K F, ZHANG S, TENG J D, et al. 3D numerical simulation of particle breaking using discrete element [J]. Rock and Soil Mechanics, 2017, 38(7): 2119–2127.
    [16] 张家铭, 汪稔, 石祥锋, 等. 侧限条件下钙质砂压缩和破碎特性试验研究 [J]. 岩石力学与工程学报, 2005, 24(18): 3327–3331. doi: 10.3321/j.issn:1000-6915.2005.18.022

    ZHANG J M, WANG R, SHI X F, et al. Compression and crushing behavior of calcareous sand under confined compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18): 3327–3331. doi: 10.3321/j.issn:1000-6915.2005.18.022
    [17] POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
    [18] ZHANG S, ZHANG F. A thermo-elasto-viscoplastic model for soft sedimentary rock [J]. Soils and Foundations, 2009, 49(4): 583–595. doi: 10.3208/sandf.49.583
    [19] WNG J F, LI Y L, GAO Y B, et al. Experimental study on structural properties influencing on compressibility of soft clay [J]. Advanced Materials Research, 2011, 261/262/263: 767–1772.
    [20] YAN W M, LI X S. Mechanical response of a medium-fine-grained decomposed granite in Hong Kong [J]. Engineering Geology, 2012, 129/130: 1–8.
    [21] HUANG J Y, XU S L, HU S S. Influence of particle breakage on the dynamic compression responses of brittle granular materials [J]. Mechanics of Materials, 2014, 68: 15–28. doi: 10.1016/j.mechmat.2013.08.002
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  8013
  • HTML全文浏览量:  3281
  • PDF下载量:  51
出版历程
  • 收稿日期:  2020-02-10
  • 修回日期:  2020-03-19

目录

    /

    返回文章
    返回