Research on Small Tungsten Spheres Penetrating into Pine Target with Body Armor
-
摘要: 为获得小钨球对防弹衣加人体等效靶的侵彻性能,对小钨球侵彻Ⅲ级软体防弹衣加25 mm厚红松靶进行了试验研究。在此基础上,结合小钨球侵彻LY-12硬铝靶试验与数值模拟,研究了LY-12硬铝靶与Ⅲ级软体防弹衣加25 mm厚红松靶之间的等效关系,并通过量纲分析方法建立了小钨球侵彻Ⅲ级软体防弹衣加25 mm厚红松靶的弹道极限预测公式,分析了小钨球质量变化对其侵彻性能影响的规律。结果表明:对于小钨球的侵彻,Ⅲ级软体防弹衣加25 mm厚红松靶可等效为6.2 mm厚LY-12硬铝靶;弹道极限预测公式的预测值与试验值吻合良好,并且随着钨球质量的增加,弹道极限近似服从幂函数递减规律。研究结果对单兵破片战斗部的改进设计具有一定的参考价值。Abstract: In order to study the penetration performance of small tungsten spheres on the human equivalent target with body armor, the test of small tungsten spheres penetrating 25 mm thick pine target with Class Ⅲ soft body armor is carried out. On this basis, the equivalent relationships between 25 mm thick pine target with Class Ⅲ soft body armor and LY-12 hard aluminum target are studied by combining the experiment and numerical simulation of small tungsten spheres penetrating LY-12 hard aluminum target. According to the method of dimensional analysis, the ballistic limit prediction formula of small tungsten spheres penetrating 25 mm thick pine target with Class Ⅲ soft body armor is established and the influence of the mass change of small tungsten spheres on the penetration performance is studied. The experimental results reveal that for the penetration of small tungsten spheres, a 25 mm thick pine target with Class Ⅲ soft body armor can be equivalent to a 6.2 mm thick LY-12 hard aluminum target. The predicted value of ballistic limit prediction formula is in good agreement with the test value. And with the increase of the mass of tungsten spheres, the ballistic limit approximately obeys the law of decreasing power function. The research results have certain reference value for the improvement and design of individual fragment warhead.
-
Key words:
- small tungsten sphere /
- body armor /
- pine target /
- numerical simulation /
- equivalent target /
- dimensional analysis /
- ballistic limit
-
表 1 R-I模型参数
Table 1. R-I model parameters
Target type $ a $ vbl/(m·s−1) $ p $ Body armor + Pine composite target 0.73 692.9 2 8 mm thick LY-12 hard aluminum target 0.77 850.1 2 表 2 弹靶材料模型参数
Table 2. Material model parameters of projectile and target
Material ρ/(g·cm−3) E/GPa μ SIGY/MPa ETAN/MPa SRC SRP FS Tungsten alloy 18.1 367 0.303 1506 792 3.9 6 1.2 LY-12 hard aluminum 2.78 71 0.3 375 1000 0 0 0.8 表 3 钨球侵彻不同厚度LY-12硬铝靶的仿真结果
Table 3. Simulation results of tungsten sphere penetrating LY-12 hard aluminum target with different thicknesses
Initial velocity/(m·s−1) Thickness of target/mm Residual velocity/(m·s−1) Penetration result 692.9 6.10 63.0 Penetration 6.20 21.4 Penetration 6.21 0 Embedment 6.25 0 Embedment 6.30 0 Embedment 表 4 钨球侵彻原型靶与等效靶弹道极限的对比
Table 4. Comparison of ballistic limits between tungsten spheres penetrating prototype target and the equivalent target
Type of tungsten sphere Target type Ballistic limit/(m·s−1) Relative error/% 0.21 g, $ \varnothing $2.8 mm Body armor + Pine composite target 692.9 1.8 6.2 mm thick LY-12 hard aluminum target 705.2 0.17 g, $ \varnothing $2.6 mm Body armor + Pine composite target 742.3 2.2 6.2 mm thick LY-12 hard aluminum target 758.7 表 5 确定弹道极限的主要物理量
Table 5. Main physical quantities for determining ballistic limit
Material Physical quantity Dimension Tungsten sphere Density ρp/(kg·m−3) ML−3 Diameter Dp/Pa L Elastic modulus $ {E}$p/Pa L−1MT−2 Yield strength $ {\sigma }$sp/Pa L−1MT−2 Characteristic strain $ {\varepsilon } $p 1 Sound velocity $ {C}$p/(m·s−1) LT−1 Body armor Density ρf /(kg·m−3) ML−3 Thickness $ {h}$f /m L Elastic modulus $ {E}$f /Pa L−1MT−2 Compressive strength $ {\sigma }$sf /Pa L−1MT−2 Shear strength $ {\sigma }_{\tau}$f /Pa L−1MT−2 Tensile strength $ {\sigma } $ff /Pa L−1MT−2 Characteristic strain $ {\varepsilon }$f 1 Sound velocity $ {C} $f /(m·s−1) LT−1 Pine Density ρs/(kg·m−3) ML−3 Thickness $ {h} $s/m L Elastic modulus $ {E} $s/Pa L−1MT−2 Failure stress $ {\sigma }$ss/Pa L−1MT−2 Characteristic strain $ {\varepsilon }$s 1 Sound velocity $ {C}$s/(m·s−1) LT−1 表 6 不同方法计算的弹道极限的比较
Table 6. Comparison of ballistic limits calculated by different methods
Mass of tungsten sphere/g Diameter of tungsten sphere/mm Ballistic limit/(m·s−1) Relative error/% Calculated Simulated 0.26 3.02 643.8 649 −0.8 0.31 3.20 609.9 623 −2.1 0.36 3.36 582.8 599 −2.8 0.41 3.52 558.1 580 −3.9 0.46 3.64 540.9 561 −3.7 表 7 0.20 g钨球侵彻防弹衣+红松木复合靶的弹道极限的试验值与计算值的对比
Table 7. Comparison between experimental and calculated values of ballistic limits of tungsten spheres with mass of 0.20 g penetrating body armor and pine composite target
Type of tungsten sphere Ballistic limit/(m·s−1) Relative error/% Experimental value Calculated value 0.20 g,$\varnothing$2.8 mm 709.4 702.5 −1.0 -
[1] 程可. 轻武器杀伤元对明胶靶标侵彻的数值仿真研究 [D]. 南京: 南京理工大学, 2012: 1–2.CHEN K. Numerical simulation research of small arms lethal-element penetrating gelatin target [D]. Nanjing: Nanjing University of Science and Technology, 2012: 1–2. [2] LIDEN E, BERLIN R, JANZON B, et al. Some observations relating to behind-body armour blunt trauma effects caused by ballistic impact [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 1988, 28(Supplement): S145–S148. doi: 10.1097/00005373-198801001-00029 [3] ROBERTS J C, O’CONNOR J V, WARD E E. Modeling the effect of nonpenetrating ballistic impact as a means of detecting behind-armor blunt trauma [J]. Journal of Trauma and Acute Care Surgery, 2005, 58: 1241–1251. doi: 10.1097/01.TA.0000169805.81214.DC [4] ROBERTS J C, MERKLE A C, BIERMANN P J, et al. Computational and experimental models of the human torso for non-penetrating ballistic impact [J]. Journal of Biomechanics, 2007, 40(1): 125–136. doi: 10.1016/j.jbiomech.2005.11.003 [5] MERKLE A C, WARD E E, O’CONNOR J V, et al. Assessing behind armor blunt trauma (BABT) under NIJ Standard-0101.04 conditions using human torso models [J]. The Journal of Trauma: Injury, Infection, and Critical Care, 2008, 64(6): 1555–1561. doi: 10.1097/TA.0b013e318160ff3a [6] SHEN W, NIU Y, BYKANOVA L, et al. Characterizing the interaction among bullet, body armor, and human and surrogate targets [J]. Journal of Biomechanical Engineering, 2010, 132(12): 121001. doi: 10.1115/1.4002699 [7] 罗少敏, 徐诚, 陈爱军, 等. 步枪弹侵彻带软硬复合防护明胶靶标的数值模拟 [J]. 兵工学报, 2014, 35(8): 1172–1178. doi: 10.3969/j.issn.1000-1093.2014.08.006LUO S M, XU C, CHEN A J, et al. Numerical simulation of bullets penetrating into gelatin target with hard/soft composite armor [J]. Acta Armamentarii, 2014, 35(8): 1172–1178. doi: 10.3969/j.issn.1000-1093.2014.08.006 [8] 孙非, 马力, 朱一辉, 等. 手枪弹对带UHMWPE软防护明胶靶标冲击效应的数值分析 [J]. 振动与冲击, 2018, 37(13): 20–26.SUN F, MA L, ZHU Y H, et al. Numerical analysis for impact effects of a pistol bullet on a gelatin target covered with UHMWPE fiber armor [J]. Journal of Vibration and Shock, 2018, 37(13): 20–26. [9] 唐刘建, 温垚珂, 薛本源, 等. 手枪弹侵彻有防护仿生人体躯干靶标试验研究 [J]. 振动与冲击, 2019, 38(4): 250–254.TANG L J, WEN Y K, XUE B Y, et al. Pistol bullet impact soft body armor covered bionic human torso [J]. Journal of Vibration and Shock, 2019, 38(4): 250–254. [10] 刘坤, 吴志林, 宁建国, 等. 手枪弹对带软防护的明胶靶标侵彻机理与实验研究 [J]. 兵工学报, 2018, 39(1): 1–17. doi: 10.3969/j.issn.1000-1093.2018.01.001LIU K, WU Z L, NING J G, et al. Investigation on the mechanism and experiment of pistol cartridge penetrating into gelatin target with soft body armor [J]. Acta Armamentarii, 2018, 39(1): 1–17. doi: 10.3969/j.issn.1000-1093.2018.01.001 [11] 黄拱武. 弹体撞击带纤维软防护明胶靶标的数值仿真研究 [D]. 南京: 南京理工大学, 2013: 41–43.HUANG G W. Numerical simulation research of projectile impacting gelatin target with fiber armor [D]. Nanjing: Nanjing University of Science and Technology, 2013: 41–43. [12] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. Journal of Applied Mechanics, 1963, 30(3): 384–390. doi: 10.1115/1.3636566 [13] 米双山, 张锡恩, 陶贵明. 钨球侵彻LY-12铝合金靶板的有限元分析 [J]. 爆炸与冲击, 2005, 25(5): 477–480. doi: 10.3321/j.issn:1001-1455.2005.05.015MI S S, ZHANG X E, TAO G M. Finite element analysis of spherical fragments penetrating LY-12 aluminum alloy target [J]. Explosion and Shock Waves, 2005, 25(5): 477–480. doi: 10.3321/j.issn:1001-1455.2005.05.015 [14] 曹兵. 不同材质靶板抗破片侵彻等效关系实验研究 [J]. 弹箭与制导学报, 2006(4): 113–114. doi: 10.3969/j.issn.1673-9728.2006.04.034CAO B. An experimental investigation on the equivalent relation between different armour plates penetrated by fragments [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2006(4): 113–114. doi: 10.3969/j.issn.1673-9728.2006.04.034 [15] 曹兵. 靶板等效方法研究 [J]. 弹箭与制导学报, 2003(Suppl 4): 122–123.CAO B. Study on equivalent target experimental methods [J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2003(Suppl 4): 122–123. [16] 李学林, 项鑫, 黄广炎, 等. 钨球破片对相控阵雷达典型部件的侵彻特性研究 [J]. 兵工学报, 2010(Supp 1): 51–54.LI X L, XIANG X, HUANG G Y, et al. Penetration characteristics of tungsten sphere fragment to typical components of phased array radar [J]. Acta Armamentarii, 2010(Supp 1): 51–54. [17] 宫能平. LY12CZ铝合金棒料的拉伸实验研究 [J]. 淮南工业学院学报, 2002(1): 62–65.GONG N P. Tensile mechanics property of aluminium LY12CZ under different strain rates [J]. Journal of Huainan Institute of Technology, 2002(1): 62–65. [18] 王雪, 智小琦, 徐锦波, 等. 球形破片侵彻多层板弹道极限的量纲分析 [J]. 高压物理学报, 2019, 33(6): 157–165.WANG X, ZHI X Q, XU J B, et al. Dimensional analysis of ballistic limit of fragments penetrating multi-layer plate [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 157–165. [19] 朱耀, 庞宝君, 盖秉政. 一种用于动态拉伸试验装置的新型试件装卡方式 [J]. 实验力学, 2009(5): 55–60.ZHU Y, PANG B J, GAI B Z. A new specimen fastener for dynamic tensile testing apparatus [J]. Journal of Experimental Mechanics, 2009(5): 55–60. [20] 米双山, 何剑彬, 张锡恩, 等. 战斗损伤仿真中的等效靶与破片终点速度研究 [J]. 兵工学报, 2005(5): 605–608. doi: 10.3321/j.issn:1000-1093.2005.05.007MI S S, HE J B, ZHANG X E, et al. Equivalent target and terminal velocity of fragments in battle damage simulation [J]. Acta Armamentarii, 2005(5): 605–608. doi: 10.3321/j.issn:1000-1093.2005.05.007 [21] 谈庆明. 量纲分析 [M]. 合肥: 中国科学技术大学出版社, 2005: 1–2.TAN Q M. Dimensional analysis [M]. Hefei: University of Science and Technology of China Press, 2005: 1–2. [22] 毛亮, 王华, 姜春兰, 等. 钨合金球形破片侵彻陶瓷/DFRP复合靶的弹道极限速度 [J]. 振动与冲击, 2015, 34(13): 1–5.MAO L, WANG H, JIANG C L, et al. Ballistic limit velocity of tungsten alloy spherical fragment penetrating ceramic/DFRP composite target plates [J]. Journal of Vibration and Shock, 2015, 34(13): 1–5.