Loading [MathJax]/jax/output/SVG/jax.js

高温、高压、高应变速率动态过程晶体塑性有限元理论模型及其应用

刘静楠 叶常青 刘桂森 沈耀

雷慧茹, 张立宏. 高压下ReN2的弹性性质[J]. 高压物理学报, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647
引用本文: 刘静楠, 叶常青, 刘桂森, 沈耀. 高温、高压、高应变速率动态过程晶体塑性有限元理论模型及其应用[J]. 高压物理学报, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874
LEI Huiru, ZHANG Lihong. Elastic Properties of ReN2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042401. doi: 10.11858/gywlxb.20180647
Citation: LIU Jingnan, YE Changqing, LIU Guisen, SHEN Yao. Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 030102. doi: 10.11858/gywlxb.20190874

高温、高压、高应变速率动态过程晶体塑性有限元理论模型及其应用

doi: 10.11858/gywlxb.20190874
基金项目: 科学挑战计划(TZ2018001)
详细信息
    作者简介:

    刘静楠(1993-),女,硕士,主要从事动态晶体塑性有限元研究. E-mail:jingnanliu@sjtu.edu.cn

    通讯作者:

    沈 耀(1972-),男,博士,教授,主要从事晶体缺陷行为、力学性能及塑性变形的微观机制研究. E-mail:yaoshen@sjtu.edu.cn

  • 中图分类号: O344.1

Crystal Plasticity Finite Element Theoretical Models and Applications for High Temperature, High Pressure and High Strain-Rate Dynamic Process

  • 摘要: 对于高温、高压、高应变速率加载条件下的材料冲击变形行为,动态晶体塑性模型能够直接反映晶体中塑性滑移的各向异性及其对温度、压力和微观组织结构的依赖性,因而广泛应用于材料的动态冲击力学响应、微观结构演化以及动态损伤破坏的模拟。本文综述了高压冲击下动态晶体塑性有限元的理论模型,主要包括变形运动学、包含状态方程的超弹性本构模型和晶体塑性本构模型,涉及位错滑移、相变、孪生等塑性变形机制,以及层裂、绝热剪切带等动态破坏方式。

     

  • 随着社会高速发展,特别是我国“双碳目标”的提出,对清洁能源的需求与日俱增,氢能作为一种环保、高效的新能源受到广泛关注。考虑到氢气管道建设成本高,利用现有的天然气管道,向甲烷中掺入一定量的氢气进而提升混合燃料热值,已成为一种经济可行的解决方案[1]。值得关注的是,近年来天然气输运事故屡有发生,若向其掺入氢气,有可能进一步加剧爆炸的危险性。倪靖等[2]讨论了不同掺氢比对甲烷-氧气爆轰特性的影响,发现掺氢后能够提高爆轰波的传播速度和爆轰敏感性。余明高等[3]通过实验研究了障碍物对甲烷-氢气爆炸特性的影响,发现最大爆炸超压和火焰传播速度随着障碍物阻塞率以及氢气体积分数的增大而增大。Yu等[4]研究了掺氢对甲烷-空气预混火焰传播特性的影响,发现随着氢气含量的增加,火焰前沿速度和爆炸超压显著升高。

    鉴于可燃气体在运输过程中的危险性,大量学者对可燃气体的抑爆问题开展了研究。Li等[5]发现CO2对甲烷爆炸的抑制效果好于N2。Luo等[6]研究BC粉对氢气-甲烷-空气预混气的抑制后发现,BC粉对掺氢比低的预混气体有较好的抑制作用。陈鹏等[7]发现当金属丝网层数大于3时,甲烷-空气预混气爆炸火焰经过金属丝网时会发生淬熄。徐海顺等[8]通过研究发现铝镁合金泡沫对甲烷-空气预混气体爆炸有较好的抑制作用,材料对传播火焰的影响机制主要体现在湍流促进和冷却抑制两方面。袁必和等[9] 研究了新型多孔聚丙烯复合材料对瓦斯爆炸的影响,发现多孔材料的抑爆性能受填充位置、材料内径以及填充长度的影响。An等[10]通过对比球形非金属材料和铝合金材料对可燃气体的抑爆结果,发现由于球形非金属材料具有较高的结构强度,因而抑爆效果较好。邵继伟等[11]研究多孔材料对可燃气体的抑爆效果后发现,组合型多孔材料在密闭容器管道系统内的抑爆效果更为突出。综合以上研究发现,非金属多孔材料对抑制甲烷爆炸具有良好的效果,但甲烷掺氢的爆炸特性较甲烷出现明显改变,并且前人对非金属多孔材料在甲烷掺氢抑爆方面的研究较少。传统的非金属材料存在易燃、爆炸后熔融物易黏附管道内壁等缺陷,严重限制了多孔非金属材料在可燃气体抑爆中的实际应用。球形抑爆材料中空多孔结构能够有效增大比表面积,扩大热损失,并且耐高温耐火焰,具有良好的阻火隔爆性质[12-13]

    本研究通过实验探究掺氢比对甲烷掺氢爆炸特性的影响,比较单一球形多孔非金属材料和组合球形多孔非金属材料的抑爆效能,并通过改变材料填充长度,分析最佳阻火抑爆性能的搭配参数,为球形多孔非金属材料在混合燃料阻隔防爆领域的应用提供理论支撑与实验依据。

    为研究掺氢比对甲烷掺氢预混气体爆炸的影响并测试球形多孔材料的抑爆性能,自主搭建了气体管道爆炸实验平台,如图1所示。实验平台主要包括爆炸实验管道、点火系统、配气系统、同步控制、高速摄像系统(拍摄速度4 000帧每秒)以及数据采集系统。

    图  1  实验装置示意图
    Figure  1.  Schematic diagram of the experiment setup

    实验管道由3节内径60 mm、管壁厚度10 mm、外径80 mm、长度2 m的水平圆形管道以及1节内径60 mm、长0.5 m、配备可视窗的方形管道组成,各个管道之间通过法兰-螺栓连接,实验管道为封闭状态。实验管道共安装2台压力传感器(CYG508微型高压传感器),分别距离管道左端1.2和6.3 m。点火系统(距离管道右端0.5 m处)由高压点火器以及2根钨丝组成,实验中点火能采用20 J。配气系统通过气瓶连接配气仪进行配气,预混气体中可燃气体的体积分数为10%。通过高速摄像系统采集火焰图像。实验过程如下:首先,清洁管道,连接管道和仪器;然后,检查管道气密性,采用抽真空法配气,向管道中通入预混气体;接着点火触发,数据采集系统对实验数据进行采集;最后,排出废气,重复实验,每组实验重复多次。

    本实验的主要材料为球形多孔非金属材料和聚氨酯(polyurethane,PU)材料,如图2所示。球形多孔非金属材料的主要材质为聚偏氟乙烯,化学性质稳定,具有很强的抗冲击性和耐高温性,并且球形材料为多孔结构,孔隙率大,比表面积大。组合球形内部填充材料主要为聚氨酯,聚氨酯材料的可塑性较强,对爆燃火焰的传播具有一定的抑制作用[14]

    图  2  多孔非金属抑爆材料
    Figure  2.  Porous non-metallic explosion suppression material

    最大爆炸压力(pmax)是评价爆炸强度以及材料抑爆性能的重要指标。为了判断掺氢比对可燃气体爆炸的影响以及单一球形多孔非金属材料和组合球形非金属材料的抑爆性能,设计如下实验方案:首先研究不同掺氢比xpmax的影响,分别对掺氢比为0%、5%、10%的甲烷掺氢预混气体进行测试,记录管道内爆炸压力并进行对比分析;在此基础上,研究多孔抑爆材料对pmax的影响,选取pmax最大的预混气体,分别对单一球形材料和组合球形材料进行抑爆实验,填充于距管道左端1.5 m的位置,填充长度分别为20、30、40 cm,对不同填充长度的同一材料以及相同填充长度的不同材料进行对比分析,判断其抑爆性能。

    掺氢比x表示为

    x=φ(H2)φ(CH4)+φ(H2)×100% (1)

    式中:φ(CH4)φ(H2)分别为甲烷-氢气混合气体中甲烷和氢气的体积分数。

    管道中不同掺氢比对预混气体爆炸压力随时间的变化曲线如图3所示。从图3可以看出,1号压力传感器所采集的压力峰值随着氢气体积分数的增大而增大。不同掺氢比对火焰图像的影响如图4所示。对比发现,随着掺氢比的提高,火焰的亮度明显变强,甲烷-空气预混气体掺氢后火焰传播特性及爆炸特性发生显著改变,氢气对甲烷爆炸具有促进作用[15]

    图  3  掺氢比对预混气体爆炸压力的影响
    Figure  3.  Effect of hydrogen doping ratio on explosion pressure of premixed gas
    图  4  不同掺氢比条件下甲烷掺氢爆炸火焰传播图像
    Figure  4.  Flame propagation images of methane hydrogen-doped syngas under different hydrogen doping ratios

    预混气体爆炸压力是反映爆炸破坏效应的重要指标,爆炸压力越大,爆炸造成的后果往往越严重。掺氢比对预混气体最大爆炸压力pmax和最大爆炸压力上升速率(dp/dt)max的影响如图5所示。当掺氢比为0%、5%、10%时,1号压力传感器处的pmax分别为200、235、245 kPa,(dp/dt)max分别为2 250、2 875、3 250 kPa/s。与未掺氢(掺氢比为0%)相比,掺氢比为10%时,1号压力传感器处的pmax提高22.50%,(dp/dt)max提高44.44%,2号传感器处的(dp/dt)max提高26.67%,说明掺氢比较低时,pmax和(dp/dt)max均随着氢气含量的增加而增大,爆炸强度增大。这是由于氢气的活性高于甲烷,反应比甲烷剧烈,发生爆炸反应的时间更短,随着掺氢比的增加,单位体积内氢气的量增多,氢气比例的升高增强了能量释放的集中程度,气体燃烧速率加快,缩短了热量损失时间,导致爆炸压力上升速率提高[16]

    图  5  不同掺氢比条件下最大爆炸压力和最大爆炸压力上升速率曲线
    Figure  5.  Maximum explosion pressure and maximum pressure rise rate for different hydrogen doping ratios

    为研究球形非金属材料对甲烷掺氢后预混气体爆炸的抑制作用,采用爆炸压力较大的掺氢比为10%的预混气体进行对照。空管道与填充不同长度的抑爆材料对爆炸压力的影响如图6所示,其中0 cm代表无抑爆材料。由图6可知,填充抑爆材料后,各个工况下的pmax均小于无抑爆材料。1号、2号压力传感器测得无抑爆材料的pmax分别为245、200 kPa。当抑爆材料的填充长度分别为20、30、40 cm时,1号压力传感器处的pmax分别为205、185、175 kPa,对比无抑爆材料时的pmax分别降低了16.33%、24.49%、28.57%,爆炸压力得到有效抑制。这是由于球形抑爆材料是多孔中空塑料球形结构,有较大的比表面积,并且球形材料把管道空间切割成多个小空间,增大了反应面与球形材料表面的接触面积,促进了球形材料与火焰的热交换,增加了热损失,并且冲击波通过球形材料时,被切割的反应面与后面的球形材料发生碰撞导致能量损失,进而使爆炸压力降低[12]。2号压力传感器处各个工况下的pmax相较于无抑爆材料分别降低5.00%、5.00%、12.50%,抑制效果较弱。这是由于随着火焰传播,火焰通过球形抑爆材料后再无障碍物,燃烧速率加快,火焰到达2号压力传感器时已充分反应,致使降压效果不明显。

    图  6  不同填充长度条件下单一球形材料对预混气体爆炸压力的影响
    Figure  6.  Effect of single spherical material with different filling lengths on explosion pressure of premixed gas

    不同填充长度对(dp/dt)max的影响如图7所示。在低填充长度下,(dp/dt)max有所上升,当填充长度为20 cm时,1号压力传感器处的(dp/dt)max提高7.69%,2号压力传感器处提高36.84%。重复实验均显示(dp/dt)max提高,这是由于当球形材料的填充长度较低时,火焰在穿越过程中的湍流度增大,燃烧传质传热进程加快,燃烧强度增大,火焰传播速度进一步加快[8]。随着填充长度的增加,火焰被分离成多个离散的湍流火焰,最大爆炸压力上升速率逐渐降低,填充长度为40 cm时,相较于无抑爆材料,1号压力传感器处的(dp/dt)max降低33.85%。

    图  7  不同填充长度条件下最大爆炸压力和最大爆炸压力上升速率曲线
    Figure  7.  Maximum explosion pressure and maximum pressure rise rate for different filling lengths

    不同长度的组合球形材料对爆炸压力的影响曲线如图8所示。从图8可以看出:与无抑爆材料相比,填充组合球形材料后pmax明显降低,说明组合球形材料对管道内可燃气体爆炸有较好的抑制效果。当填充长度分别为20、30、40 cm时,1号压力传感器测得的pmax分别为160、155、120 kPa,与无抑爆材料相比,分别衰减了34.69%、36.73%、51.02%,相较于单一球形非金属材料,抑爆性能分别提升了112.43%、49.98%、78.58%;2号压力传感器测得的pmax为135、135、110 kPa,与无抑爆材料相比,分别衰减了32.50%、32.50%、45.00%。可以看到,当填充长度为20和30 cm时,抑爆性能差别不大,这是多孔材料冷却抑制与障碍物加压共同作用的结果: 当火焰经过球形多孔抑爆材料时,材料会吸收热量从而对爆炸产生抑制效果,材料的填充长度越长,抑制效果越好;球形材料在管道中相当于障碍物,火焰经过障碍物时层流会转变成湍流,增加障碍物数量能够明显增大火焰传播过程中的湍流强度,导致压力上升[3]。当填充长度较低时,材料冷却抑制效果与障碍物加压效果相互抵消,最终导致抑制作用较接近。

    图  8  不同填充长度的组合球形材料对预混气体爆炸压力的影响
    Figure  8.  Effect of combined spherical material with different filling lengths on explosion pressure of premixed gas

    图9中可以看出,(dp/dt)max也得到了较大程度的抑制,与无抑爆材料相比,填充长度为20、30、40 cm时,1号压力传感器处的(dp/dt)max分别衰减34.62%、46.15%、53.85%,2号压力传感器处的(dp/dt)max最高衰减了47.37%,抑制效果明显。与单一球形材料相比,组合球形材料的抑爆性能得到大幅增强。这是由于爆炸穿越填充材料时,被球形材料多孔结构离散后的湍流火焰和冲击波能量与球形多孔材料中的聚氨酯材料接触,聚氨酯材料粗糙的壁面消耗了链式反应中的自由基,阻碍燃烧链式反应的进行,并使部分火焰热量转移到聚氨酯材料中,在火焰与聚氨酯材料发生碰撞的过程中,聚氨酯材料与冲击波产生摩擦,导致部分冲击波能量转化为热量并消散掉[14]

    图  9  不同填充长度条件下最大爆炸压力和最大爆炸压力上升速率曲线
    Figure  9.  Maximum explosion pressure and maximum pressure rise rate for different filling lengths

    基于自主搭建的气体爆炸管道平台,研究了不同掺氢比条件下甲烷掺氢的爆炸特性以及不同类型球形抑爆材料的抑爆性能,得到以下结论。

    (1) 氢气对甲烷-空气爆炸具有一定的促进作用。在低掺氢比下,随着可燃气体中氢气体积分数的增加,火焰传播速率加快,最大爆炸压力和最大爆炸压力上升速率升高。

    (2) 单一球形多孔非金属材料对可燃气体爆炸具有两方面作用:一方面为抑制作用,体现在填充材料后,球形材料会吸收能量,导致最大爆炸压力降低,并且填充长度越长,抑制效果越好;另一方面为促进作用,体现在填充长度较低时,会导致燃烧传质传热进程加快,火焰传播加速,导致最大爆炸压力上升速率上升。

    (3) 组合球形多孔非金属材料与单一球形多孔非金属材料相比,抑爆性能大幅提升,降压效果明显,当填充长度为40 cm时,最大爆炸压力衰减51.02%。球形材料抑爆性能受填充长度影响,在冷却抑制与障碍物增压的共同作用下,填充20和30 cm的组合球形多孔非金属材料的抑爆效果相差不大。

  • 图  经典的晶体运动学构型

    Figure  1.  Classical configurations of crystal kinematics

    图  引入热膨胀构型的变形梯度分解F = FeFθFp[19]

    Figure  2.  Decomposition of deformation gradient considered thermally-expanded configuration F=FeFθFp \normalsize[19]

    图  (a)热能协助位错克服势垒(T0 < T1 < T2 < T3)[51],(b)位错在运动过程中遇到的势垒[52]

    Figure  3.  (a) Thermal energy assists dislocations to overcome barriers ( T0<T1<T2<T3 \normalsize)[51], and (b) barriers encountered by a dislocation on its course[52]

    图  热软化效应对多晶Ta在32 GPa冲击变形下累积塑性滑移量的影响[29]

    Figure  4.  Influence of thermal softening on accumulated plastic slip of polycrystalline Ta during shock deformation under 32 GPa[29]

    图  α-RDX单晶沿<210>晶向平板撞击变形过程中声子拖曳对(021)<100>滑移系上滑移阻力的影响[26]

    Figure  5.  Influence of phonon drag on slip resistance of (021)<100> slip system, during α-RDX single crystal deformed in plate impact along <210> direction[26]

    图  螺位错滑移的Kink-pair机制[27]

    Figure  6.  Illustration of screw dislocation motion via a Kink-pair mechanism[27]

    图  位错平均运动与热激活运动以及拖曳运动的对比[27]

    Figure  7.  Comparison of the average dislocation velocity with the velocities of thermally-activated and drag-dominated dislocation motions[27]

    图  不同压力加载下位错密度的演化机制[83]

    Figure  8.  Dislocation density evolution mechanisms under different loading pressure[83]

    图  RDX的α相与γ相Gibbs自由能之差与温度、压强的关系[38]

    Figure  9.  Difference between Gibbs free energies of the α and γ RDX polymorphs as a function of pressure and temperature[38]

    图  10  Fe冲击相变的单晶模拟与多晶实验结果[111]

    Figure  10.  Single crystal Fe simulation data and polycrystal experimental data of shock-induced phase transformation[111]

    图  11  冲击变形过程中波的传播及层裂现象(a)、3个时刻的应力波形(b)和3个位置的应力历史(c)[52]

    Figure  11.  Wave propagation and spalling phenomenon (a), stress profiles at three different times (b), as well as stress histories at three different positions (c) during shock deformation[52]

    图  12  铅合金动态晶体塑性有限元模拟结果:(a)层裂形核时的压力,(b)层裂形核时的弹性能密度,(c)经250 m/s冲击加载层裂面附近的等效应力;(d)经350 m/s冲击加载层裂面附近的等效应力[24]

    Figure  12.  Dynamic crystal plasticity finite element simulation results of lead alloy: (a) pressure of spalling nucleation; (b) elastic energy density of spalling nucleation; (c) equivalent stress near the spalling surface under 250 m/s shock loading; (d) equivalent stress near the spalling surface under 350 m/s shock loading[24]

    图  13  多孔晶体的变形梯度分解为弹性部分(Fe)、不可逆偏量部分(Fp)和不可逆体积变形部分(Fd)[134]

    Figure  13.  Decompose deformation gradient of porous crystal into elastic part (Fe) and irreversible volumetric part (Fp) and irreversible volumetric part(Fd)[134]

    图  14  晶粒取向和应力三轴度对孔洞合并的临界状态变量的影响[133]

    Figure  14.  Influence of grain orientation and stress triaxiality on critical state variables for void coalescence[133]

    图  15  经典应力-应变曲线上塑性变形的3个阶段(Stage 1:均匀变形;Stage 2:非均匀变形;Stage 3:宏观热塑性失稳)[51]

    Figure  15.  Three stages of plastic deformation appeared on classical stress-strain curve (Stage1: homogeneous deformation; Stage2: inhomogeneous deformation; Stage3: macroscopic thermoplastic instability)[51]

    图  16  不同累积滑移速率变形ˉγ=0.05时的温升云图[143]

    Figure  16.  Distribution of temperature increase when ˉγ=0.05 \normalsize for different accumulated slip rates[143]

    图  17  hcp单晶和多晶样品在105 s–1应变率下的绝热剪切局域化[147]

    Figure  17.  Adiabatic shear localization of hcp single crystal and polycrystalline samples under 105 s–1 strain rate[147]

    图  18  动态冲击载荷下6种织构材料中形成绝热剪切带的临界应变(Vpeak = 20 m/s)[147]

    Figure  18.  Critical strain of adiabatic shear band nucleated in 6 different texture materials under dynamic shock loading ( Vpeak=20m/s \normalsize) [147]

    A1  运动学符号说明

    A1.   Symbol description of kinematics

    SymbolsDescription
    F(Fe, Fp, Fθ )Deformation gradient including elastic, plastic and thermal components
    L(Le, Lp, Lθ )Velocity gradient including elastic, plastic and thermal components
    ReRotation tensor
    UeRight stretch tensor
    αThermal expansion coefficient tensor
    下载: 导出CSV

    A2  热力学符号说明

    A2.   Symbol description of thermodynamics

    SymbolsDescriptionSymbolsDescription
    DintIntrinsic dissipation of the systemK0Bulk modulus at zero pressure
    ψHelmholtz free energyKPressure derivative of bulk modulus
    sEntropy of the systemTDDebye temperature
    TTemperatureRMolar gas constant
    KTIsothermal bulk modulusMmolMolar mass of the material
    cVHeat capacity at constant volumekBBoltzmann constant
    ΓGrüneisen coefficientXTNVariables related to the lattice thermal vibration
    qnInternal variables for microscopic defects such
    as dislocations in materials
    XTEVariables related to the electron activation
    下载: 导出CSV

    A3  塑性本构符号说明

    A3.   Symbol description of plastic constitution

    SymbolsDescriptionSymbolsDescription
    λ αMean spacing between obstaclesραforForest dislocation density
    ταResolved shear stress tαrThe drag-dominated mean transit time between obstacles
    QαActivation energyBViscous drag coefficient
    gαSlip resistance˙ραnucThe nucleation rate
    gαathAthermal slip resistance˙ραhomThe homogeneous nucleation rate
    hαβHardening coefficient˙ραhetThe heterogeneous nucleation rate
    ραTotal dislocation density˙ραmultThe multiplication rate
    ραmMobile dislocation density˙ραtrapThe trapping rate
    ραiImmobile dislocation density˙ραannThe annihilation rate
    bαBurgers vectordaCapture distance of annihilation
    vαVelocity of mobile dislocationstαwThe thermal activation-dominated waiting time at a barrier
    ˙γαSlip rate on slip system α
    下载: 导出CSV

    A4  超弹性本构符号说明

    A4.   Symbol description of hyper-elastic constitution

    SymbolsDescriptionSymbolsDescription
    ISecond-order unit tensor^EeIsochoric strain in expanded configuration
    EeElastic Green–Lagrange strain^^EeIsochoric strain in configuration I
    CeElastic right Cauchy-Green tensor¯EeVolumetric strain in configuration I
    ^FeIsochoric part of elastic deformationSSecond Piola–Kirchhoff stress
    ¯FeVolumetric expansion
    下载: 导出CSV

    A5  相变、孪晶与动态破坏符号说明

    A5.   Symbol description of phase transformation, twining and damage

    SymbolsDescriptionSymbolsDescription
    FtrDeformation gradient of phase transformationSβtwTwin resistance of twin system
    vpVolume fraction of the parent phaseρdebDislocationdebris density
    vtVolume fraction of the new phase tdmfpDislocation mean free path related to the volume fraction of twin
    vNVolume fraction of all new phasesφVoid volume fraction
    ftDriving force of phase transformationFdVolumetricpartofplastic deformation gradient in porous crystal plastic model
    f βVolume fraction of twinYrResistance of damage evolution
    γtwCharacteristic shear strain of twining
    下载: 导出CSV
  • [1] BODNER S R, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials [J]. Journal of Applied Mechanics, 1975, 42(2): 385–389. doi: 10.1115/1.3423586
    [2] JOHNSON G R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures [J]. Proceeding of the 7th International Symposium on Ballistics, 1983: 541–547.
    [3] ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
    [4] STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
    [5] GUPTA Y M, DUVALL G E, FOWLES G R. Dislocation mechanisms for stress relaxation in shocked LiF [J]. Journal of Applied Physics, 1975, 46(2): 532–546. doi: 10.1063/1.321678
    [6] ASAY J R, FOWLES G R, DURALL G E, et al. Effects of point defects on elastic precursor decay in LiF [J]. Journal of Applied Physics, 1972, 43(5): 2132–2145. doi: 10.1063/1.1661464
    [7] WOLFER W G. Phonon drag on dislocations at high pressures: UCRL-ID-136221 [R]. Office of Scientific and Technical Information (OSTI), 1999.
    [8] CAWKWELL M J, RAMOS K J, HOOKS D E, et al. Homogeneous dislocation nucleation in cyclotrimethylene trinitramine under shock loading [J]. Journal of Applied Physics, 2010, 107(6): 063512. doi: 10.1063/1.3305630
    [9] SHEHADEH M A, BRINGA E M, ZBIB H M, et al. Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations [J]. Applied Physics Letters, 2006, 89(17): 171918. doi: 10.1063/1.2364853
    [10] CERRETA E K, ESCOBEDO J P, RIGG P A, et al. The influence of phase and substructural evolution during dynamic loading on subsequent mechanical properties of zirconium [J]. Acta Materialia, 2013, 61(20): 7712–7719. doi: 10.1016/j.actamat.2013.09.009
    [11] BOURNE N K, MILLETT J C F, CHEN M, et al. On the Hugoniot elastic limit in polycrystalline alumina [J]. Journal of Applied Physics, 2007, 102(7): 073514. doi: 10.1063/1.2787154
    [12] MEYERS M A, GREGORI F, KAD B K, et al. Laser-induced shock compression of monocrystalline copper: characterization and analysis [J]. Acta Materialia, 2003, 51(5): 1211–1228. doi: 10.1016/S1359-6454(02)00420-2
    [13] RAHUL, DE S. A phase-field model for shock-induced α-γ phase transition of RDX [J]. International Journal of Plasticity, 2017, 88: 140–158. doi: 10.1016/j.ijplas.2016.10.006
    [14] ADDESSIO F L, LUSCHER D J, CAWKWELL M J, et al. A single-crystal model for the high-strain rate deformation of cyclotrimethylene trinitramine including phase transformations and plastic slip [J]. Journal of Applied Physics, 2017, 121(18): 185902. doi: 10.1063/1.4983009
    [15] WINEY J M, GUPTA Y M. Shock wave compression of hexagonal-close-packed metal single crystals: time-dependent, anisotropic elastic-plastic response of beryllium [J]. Journal of Applied Physics, 2014, 116(3): 033505. doi: 10.1063/1.4889886
    [16] KADAU K, GERMANN T C, LOMDAHL P S, et al. Shock waves in polycrystalline iron [J]. Physical Review Letters, 2007, 98(13): 135701. doi: 10.1103/PhysRevLett.98.135701
    [17] KANEL G I. Spall fracture: methodological aspects, mechanisms and governing factors [J]. International Journal of Fracture, 2010, 163(1/2): 173–191.
    [18] CHEN X, ASAY J R, DWIVEDI S K, et al. Spall behavior of aluminum with varying microstructures [J]. Journal of Applied Physics, 2006, 99(2): 023528. doi: 10.1063/1.2165409
    [19] ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications [J]. Acta Materialia, 2010, 58(4): 1152–1211. doi: 10.1016/j.actamat.2009.10.058
    [20] 郑松林. 晶体塑性有限元在材料动态响应研究中的应用进展 [J]. 高压物理学报, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725

    ZHENG S L. Advances in the study of dynamic response of crystalline materials by crystal plasticity finite element modeling [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030108. doi: 10.11858/gywlxb.20190725
    [21] HILL R, RICE J R. Constitutive analysis of elastic-plastic crystals at arbitrary strain [J]. Journal of the Mechanics and Physics of Solids, 1972, 20(6): 401–413. doi: 10.1016/0022-5096(72)90017-8
    [22] ASARO R J. Micromechanics of crystals and polycrystals [M]//Advances in Applied Mechanics. Elsevier, 1983: 1–115.
    [23] CLAYTON J D. Dynamic plasticity and fracture in high density polycrystals: constitutive modeling and numerical simulation [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(2): 261–301. doi: 10.1016/j.jmps.2004.06.009
    [24] VOGLER T, CLAYTON J. Heterogeneous deformation and spall of an extruded tungsten alloy: plate impact experiments and crystal plasticity modeling [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(2): 297–335. doi: 10.1016/j.jmps.2007.06.013
    [25] HANSEN B L, BEYERLEIN I J, BRONKHORST C A, et al. A dislocation-based multi-rate single crystal plasticity model [J]. International Journal of Plasticity, 2013, 44: 129–146. doi: 10.1016/j.ijplas.2012.12.006
    [26] DE S, ZAMIRI A R, RAHUL. A fully anisotropic single crystal model for high strain rate loading conditions with an application to α-RDX [J]. Journal of the Mechanics and Physics of Solids, 2014, 64: 287–301. doi: 10.1016/j.jmps.2013.10.012
    [27] SHAHBA A, GHOSH S. Crystal plasticity FE modeling of Ti alloys for a range of strain-rates. Part Ⅰ: a unified constitutive model and flow rule [J]. International Journal of Plasticity, 2016, 87: 48–68. doi: 10.1016/j.ijplas.2016.09.002
    [28] BELYTSCHKO T, LIU W K, MORAN B, et al. Nonlinear finite elements for continua and structures [M]. John Wiley & Sons, 2013.
    [29] BECKER R. Effects of crystal plasticity on materials loaded at high pressures and strain rates [J]. International Journal of Plasticity, 2004, 20(11): 1983–2006. doi: 10.1016/j.ijplas.2003.09.002
    [30] PI A G, HUANG F L, WU Y Q, et al. Anisotropic constitutive model and numerical simulations for crystalline energetic material under shock loading [J]. Mathematics and Mechanics of Solids, 2014, 19(6): 640–658. doi: 10.1177/1081286513482322
    [31] LUSCHER D J, BRONKHORST C A, ALLEMAN C N, et al. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions [J]. Journal of the Mechanics and Physics of Solids, 2013, 61(9): 1877–1894. doi: 10.1016/j.jmps.2013.05.002
    [32] LUSCHER D J, MAYEUR J R, MOURAD H M, et al. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions [J]. International Journal of Plasticity, 2016, 76: 111–129. doi: 10.1016/j.ijplas.2015.07.007
    [33] DOS SANTOS T, ROSA P A R, MAGHOUS S, et al. A simplified approach to high strain rate effects in cold deformation of polycrystalline FCC metals: constitutive formulation and model calibration [J]. International Journal of Plasticity, 2016, 82: 76–96. doi: 10.1016/j.ijplas.2016.02.003
    [34] STAINIER L, ORTIZ M. Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity [J]. International Journal of Solids and Structures, 2010, 47(5): 705–715. doi: 10.1016/j.ijsolstr.2009.11.012
    [35] VON NEUMANN J, RICHTMYER R D. A method for the numerical calculation of hydrodynamic shocks [J]. Journal of Applied Physics, 1950, 21(3): 232–237. doi: 10.1063/1.1699639
    [36] VINET P, SMITH J R, FERRANTE J, et al. Temperature effects on the universal equation of state of solids [J]. Physical Review B, 1987, 35(4): 1945. doi: 10.1103/PhysRevB.35.1945
    [37] 李欣竹. 金属物态方程的讨论 [D]. 绵阳: 中国工程物理研究院, 2003.

    LI X Z. Discussion for the semi-empiric equation of state of metals [D]. Mianyang: China Academy of Engineering Physics, 2003.
    [38] CAWKWELL M J, LUSCHER D J, ADDESSIO F L, et al. Equations of state for the α and γ polymorphs of cyclotrimethylene trinitramine [J]. Journal of Applied Physics, 2016, 119(18): 185106. doi: 10.1063/1.4948673
    [39] LUSCHER D J, ADDESSIO F L, CAWKWELL M J, et al. A dislocation density-based continuum model of the anisotropic shock response of single crystal α-cyclotrimethylene trinitramine [J]. Journal of the Mechanics and Physics of Solids, 2017, 98: 63–86. doi: 10.1016/j.jmps.2016.09.005
    [40] 尚福林, 王子昆. 塑性力学基础 [M]. 西安: 西安交通大学出版社, 2011.

    SHANG F L, WANG Z K. Fundamentals of of plasticity [M]. Xi’an: Xi’an Jiaotong University Press, 2011.
    [41] HUTCHINSON J W. Bounds and self-consistent estimates for creep of polycrystalline materials [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1976, 348(1652): 101–127.
    [42] LI H W, YANG H, SUN Z C. A robust integration algorithm for implementing rate dependent crystal plasticity into explicit finite element method [J]. International Journal of Plasticity, 2008, 24(2): 267–288. doi: 10.1016/j.ijplas.2007.03.014
    [43] KHAN A S, LIU J, YOON J W, et al. Strain rate effect of high purity aluminum single crystals: experiments and simulations [J]. International Journal of Plasticity, 2015, 67: 39–52. doi: 10.1016/j.ijplas.2014.10.002
    [44] ZHANG K, HOPPERSTAD O, HOLMEDAL B, et al. A robust and efficient substepping scheme for the explicit numerical integration of a rate-dependent crystal plasticity model [J]. International Journal for Numerical Methods in Engineering, 2014, 99(4): 239–262. doi: 10.1002/nme.4671
    [45] LIM H, JONG BONG H, CHEN S R, et al. Developing anisotropic yield models of polycrystalline tantalum using crystal plasticity finite element simulations [J]. Materials Science and Engineering A, 2018, 730: 50–56. doi: 10.1016/j.msea.2018.05.096
    [46] BOBBILI R, MADHU V. Crystal plasticity modeling of a near alpha titanium alloy under dynamic compression [J]. Journal of Alloys and Compounds, 2018, 759: 85–92. doi: 10.1016/j.jallcom.2018.05.167
    [47] KOCKS U F, ARGON A S, ASHBY M F. Thermodynamics and kinetics of slip [J]. Progress in Materials Science, 1975, 19: 141–145.
    [48] LI J F, ROMERO I, SEGURADO J. Development of a thermo-mechanically coupled crystal plasticity modeling framework: application to polycrystalline homogenization [J]. International Journal of Plasticity, 2019, 119: 313–330. doi: 10.1016/j.ijplas.2019.04.008
    [49] BRONKHORST C A, GRAY G T III, ADDESSIO F L, et al. Publisher's note: “Response and representation of ductile damage under varying shock loading conditions in tantalum”[J. Appl. Phys. 119, 085103(2016)] [J]. Journal of Applied Physics, 2016, 119(10): 109901.
    [50] CHANDRA S, SAMAL M K, KAPOOR R, et al. Deformation behavior of Nickel-based superalloy Su-263: experimental characterization and crystal plasticity finite element modeling [J]. Materials Science and Engineering A, 2018, 735: 19–30. doi: 10.1016/j.msea.2018.08.022
    [51] 王礼立, 胡时胜, 杨黎明. 材料动力学 [M]. 合肥: 中国科学技术大学出版社, 2017.

    WANG L L, HU S S, YANG L M. Thermodynamics and kinetics of materials [M]. Hefei: Press of University of Science and Technology of China, 2017.
    [52] MEYERS M A. 材料的动力学行为 [M]. 张庆明, 译. 北京: 国防工业出版社, 2006.

    MEYERS M A. Dynamic behavior of materials [M]. Translated by ZHANG Q M. Beijing: National Defense Industry Press, 2006.
    [53] 黄克智, 肖纪美. 材料的损伤断裂机理和宏微观力学理论 [M]. 北京: 清华大学出版社, 1999.

    HUANG K Z, XIAO J M. Damage and fracture mechanisms of materials and macro-micro-mechanics [M]. Beijing: Tsinghua University Press, 1999.
    [54] BITTENCOURT E. Dynamic explicit solution for higher-order crystal plasticity theories [J]. International Journal of Plasticity, 2014, 53: 1–16. doi: 10.1016/j.ijplas.2013.06.010
    [55] PEIRCE D, ASARO R J, NEEDLEMAN A. An analysis of nonuniform and localized deformation in ductile single crystals [J]. Acta Metallurgica, 1982, 30(6): 1087–1119. doi: 10.1016/0001-6160(82)90005-0
    [56] ACHARYA A, BEAUDOIN A J. Grain-size effect in viscoplastic polycrystals at moderate strains [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(10): 2213–2230. doi: 10.1016/S0022-5096(00)00013-2
    [57] CLAYTON J D. Modeling dynamic plasticity and spall fracture in high density polycrystalline alloys [J]. International Journal of Solids and Structures, 2005, 42(16/17): 4613–4640.
    [58] CLAYTON J D. Plasticity and spall in high density polycrystals: modeling and simulation [C]//AIP Conference Proceedings, Baltimore, Maryland (USA). AIP, 2006.
    [59] TAJALLI S A, MOVAHHEDY M R, AKBARI J. Simulation of orthogonal micro-cutting of FCC materials based on rate-dependent crystal plasticity finite element model [J]. Computational Materials Science, 2014, 86: 79–87. doi: 10.1016/j.commatsci.2014.01.016
    [60] LI J G, LI Y L, HUANG C X, et al. On adiabatic shear localization in nanostructured face-centered cubic alloys with different stacking fault energies [J]. Acta Materialia, 2017, 141: 163–182. doi: 10.1016/j.actamat.2017.09.022
    [61] LI J G, LI Y L, SUO T, et al. Numerical simulations of adiabatic shear localization in textured FCC metal based on crystal plasticity finite element method [J]. Materials Science and Engineering A, 2018, 737: 348–363. doi: 10.1016/j.msea.2018.08.105
    [62] JOHNSTON W G, GILMAN J J. Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals [J]. Journal of Applied Physics, 1959, 30(2): 129–144. doi: 10.1063/1.1735121
    [63] GILMAN J J. The plastic resistance of crystals [J]. Australian Journal of Physics, 1960, 13(2): 327. doi: 10.1071/PH600327a
    [64] GILMAN J J. Micromechanics of flow in solids [M]. McGraw-Hill, 1969.
    [65] JOHNSON J N, BARKER L M. Dislocation dynamics and steady plastic wave profiles in 6061-T6 aluminum [J]. Journal of Applied Physics, 1969, 40(11): 4321–4334. doi: 10.1063/1.1657194
    [66] ALANKAR A, EISENLOHR P, RAABE D. A dislocation density-based crystal plasticity constitutive model for prismatic slip in α-titanium [J]. Acta Materialia, 2011, 59(18): 7003–7009. doi: 10.1016/j.actamat.2011.07.053
    [67] ZHANG H M, DONG X H, DU D P, et al. A unified physically based crystal plasticity model for FCC metals over a wide range of temperatures and strain rates [J]. Materials Science and Engineering A, 2013, 564: 431–441. doi: 10.1016/j.msea.2012.12.001
    [68] MONNET G, VINCENT L, DEVINCRE B. Dislocation-dynamics based crystal plasticity law for the low- and high-temperature deformation regimes of bcc crystal [J]. Acta Materialia, 2013, 61(16): 6178–6190. doi: 10.1016/j.actamat.2013.07.002
    [69] NGUYEN T, LUSCHER D J, WILKERSON J W. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals [J]. Journal of the Mechanics and Physics of Solids, 2017, 108: 1–29. doi: 10.1016/j.jmps.2017.07.020
    [70] GRILLI N, JANSSENS K G F, NELLESSEN J, et al. Multiple slip dislocation patterning in a dislocation-based crystal plasticity finite element method [J]. International Journal of Plasticity, 2018, 100: 104–121. doi: 10.1016/j.ijplas.2017.09.015
    [71] FROST H J, ASHBY M F. Motion of a dislocation acted on by a viscous drag through an array of discrete obstacles [J]. Journal of Applied Physics, 1971, 42(13): 5273–5279. doi: 10.1063/1.1659936
    [72] LIM H, BATTAILE C C, CARROLL J D, et al. A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity [J]. Journal of the Mechanics and Physics of Solids, 2015, 74: 80–96. doi: 10.1016/j.jmps.2014.10.003
    [73] KOCKS W. Thermodynamics and kinetics of slip [J]. Progress in Materials Science, 1975, 19: 1–281. doi: 10.1016/0079-6425(75)90005-5
    [74] AUSTIN R A. Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature [J]. Journal of Applied Physics, 2018, 123(3): 035103. doi: 10.1063/1.5008280
    [75] AUSTIN R A, MCDOWELL D L. A dislocation-based constitutive model for viscoplastic deformation of fcc metals at very high strain rates [J]. International Journal of Plasticity, 2011, 27(1): 1–24. doi: 10.1016/j.ijplas.2010.03.002
    [76] AUSTIN R A, MCDOWELL D L. Parameterization of a rate-dependent model of shock-induced plasticity for copper, nickel, and aluminum [J]. International Journal of Plasticity, 2012, 32/33: 134–154. doi: 10.1016/j.ijplas.2011.11.002
    [77] GAO C Y, ZHANG L C. Constitutive modelling of plasticity of fcc metals under extremely high strain rates [J]. International Journal of Plasticity, 2012, 32/33: 121–133. doi: 10.1016/j.ijplas.2011.12.001
    [78] WANG Z Q, BEYERLEIN I J, LESAR R. Slip band formation and mobile dislocation density generation in high rate deformation of single fcc crystals [J]. Philosophical Magazine, 2008, 88(9): 1321–1343. doi: 10.1080/14786430802129833
    [79] TSCHOPP M A, MCDOWELL D L. Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading [J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5): 1806–1830. doi: 10.1016/j.jmps.2007.11.012
    [80] SHEHADEH M A, ZBIB H M. On the homogeneous nucleation and propagation of dislocations under shock compression [J]. Philosophical Magazine, 2016, 96(26): 2752–2778. doi: 10.1080/14786435.2016.1213444
    [81] MA A, ROTERS F, RAABE D. A dislocation density based constitutive model for crystal plasticity FEM including geometrically necessary dislocations [J]. Acta Materialia, 2006, 54(8): 2169–2179. doi: 10.1016/j.actamat.2006.01.005
    [82] MA A, ROTERS F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals [J]. Acta Materialia, 2004, 52(12): 3603–3612. doi: 10.1016/j.actamat.2004.04.012
    [83] LLOYD J T, CLAYTON J D, AUSTIN R A, et al. Plane wave simulation of elastic-viscoplastic single crystals [J]. Journal of the Mechanics and Physics of Solids, 2014, 69: 14–32. doi: 10.1016/j.jmps.2014.04.009
    [84] ALANKAR A, FIELD D P, ZBIB H M. Explicit incorporation of cross-slip in a dislocation density-based crystal plasticity model [J]. Philosophical Magazine, 2012, 92(24): 3084–3100. doi: 10.1080/14786435.2012.685964
    [85] KESHAVARZ S, GHOSH S. Multi-scale crystal plasticity finite element model approach to modeling nickel-based superalloys [J]. Acta Materialia, 2013, 61(17): 6549–6561. doi: 10.1016/j.actamat.2013.07.038
    [86] LIANG H, DUNNE F P E. GND accumulation in bi-crystal deformation: crystal plasticity analysis and comparison with experiments [J]. International Journal of Mechanical Sciences, 2009, 51(4): 326–333. doi: 10.1016/j.ijmecsci.2009.03.005
    [87] GÜVENÇ O, BAMBACH M, HIRT G. Coupling of crystal plasticity finite element and phase field methods for the prediction of SRX kinetics after hot working [J]. Steel Research International, 2014, 85(6): 999–1009. doi: 10.1002/srin.201300191
    [88] KONDO R, TADANO Y, SHIZAWA K. A phase-field model of twinning and detwinning coupled with dislocation-based crystal plasticity for HCP metals [J]. Computational Materials Science, 2014, 95: 672–683. doi: 10.1016/j.commatsci.2014.08.034
    [89] CHEN L, CHEN J, LEBENSOHN R A, et al. An integrated fast Fourier transform-based phase-field and crystal plasticity approach to model recrystallization of three dimensional polycrystals [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 285: 829–848. doi: 10.1016/j.cma.2014.12.007
    [90] COTTURA M, APPOLAIRE B, FINEL A, et al. Coupling the phase field method for diffusive transformations with dislocation density-based crystal plasticity: application to Ni-based superalloys [J]. Journal of the Mechanics and Physics of Solids, 2016, 94: 473–489. doi: 10.1016/j.jmps.2016.05.016
    [91] PARANJAPE H M, MANCHIRAJU S, ANDERSON P M. A phase field: finite element approach to model the interaction between phase transformations and plasticity in shape memory alloys [J]. International Journal of Plasticity, 2016, 80: 1–18. doi: 10.1016/j.ijplas.2015.12.007
    [92] IDESMAN A V, LEVITAS V I, STEIN E. Elastoplastic materials with martensitic phase transition and twinning at finite strains: numerical solution with the finite element method [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 173(1/2): 71–98.
    [93] HUANG M, BRINSON L C. A Multivariant model for single crystal shape memory alloy behavior [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1379–1409. doi: 10.1016/S0022-5096(97)00080-X
    [94] BHATTACHARYYA A, WENG G J. An energy criterion for the stress-induced martensitic transformation in a ductile system [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(11): 1699–1724. doi: 10.1016/0022-5096(94)90068-X
    [95] STRINGFELLOW R G, PARKS D M, OLSON G B. A constitutive model for transformation plasticity accompanying strain-induced martensitic transformations in metastable austenitic steels [J]. Acta Metallurgica et Materialia, 1992, 40(7): 1703–1716. doi: 10.1016/0956-7151(92)90114-T
    [96] LEBLOND J B, MOTTET G, DEVAUX J C. A theoretical and numerical approach to the plastic behaviour of steels during phase transformations: Ⅰ. derivation of general relations [J]. Journal of the Mechanics and Physics of Solids, 1986, 34(4): 395–409. doi: 10.1016/0022-5096(86)90009-8
    [97] THAMBURAJA P, ANAND L. Polycrystalline shape-memory materials: effect of crystallographic texture [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 709–737. doi: 10.1016/S0022-5096(00)00061-2
    [98] MA A X, HARTMAIER A. A study of deformation and phase transformation coupling for TRIP-assisted steels [J]. International Journal of Plasticity, 2015, 64: 40–55. doi: 10.1016/j.ijplas.2014.07.008
    [99] SUN C Y, GUO N, FU M W, et al. Modeling of slip, twinning and transformation induced plastic deformation for TWIP steel based on crystal plasticity [J]. International Journal of Plasticity, 2016, 76: 186–212. doi: 10.1016/j.ijplas.2015.08.003
    [100] LEE M G, KIM S J, HAN H N. Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite [J]. International Journal of Plasticity, 2010, 26(5): 688–710. doi: 10.1016/j.ijplas.2009.10.001
    [101] TURTELTAUB S, SUIKER A S J. Transformation-induced plasticity in ferrous alloys [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(8): 1747–1788. doi: 10.1016/j.jmps.2005.03.004
    [102] TURTELTAUB S, SUIKER A S J. A multiscale thermomechanical model for cubic to tetragonal martensitic phase transformations [J]. International Journal of Solids and Structures, 2006, 43(14/15): 4509–4545.
    [103] SUIKER A S J, TURTELTAUB S. Computational modelling of plasticity induced by martensitic phase transformations [J]. International Journal for Numerical Methods in Engineering, 2005, 63(12): 1655–1693. doi: 10.1002/nme.1327
    [104] MANCHIRAJU S, ANDERSON P M. Coupling between martensitic phase transformations and plasticity: a microstructure-based finite element model [J]. International Journal of Plasticity, 2010, 26(10): 1508–1526. doi: 10.1016/j.ijplas.2010.01.009
    [105] FENG B, BRONKHORST C A, ADDESSIO F L, et al. Coupled elasticity, plastic slip, and twinning in single crystal titanium loaded by split-Hopkinson pressure bar [J]. Journal of the Mechanics and Physics of Solids, 2018, 119: 274–297. doi: 10.1016/j.jmps.2018.06.018
    [106] GREEFF C W. Alpha-omega transition in Ti: equation of state and kinetics [C]//AIP Conference Proceedings. Atlanta, Georgia (USA). AIP, 2002: 225–228.
    [107] TJAHJANTO D D, TURTELTAUB S, SUIKER A S J. Crystallographically based model for transformation-induced plasticity in multiphase carbon steels [J]. Continuum Mechanics and Thermodynamics, 2008, 19(7): 399–422. doi: 10.1007/s00161-007-0061-x
    [108] THAMBURAJA P. A finite-deformation-based phenomenological theory for shape-memory alloys [J]. International Journal of Plasticity, 2010, 26(8): 1195–1219. doi: 10.1016/j.ijplas.2009.12.004
    [109] THAMBURAJA P, PAN H, CHAU F S. Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti-Ni sheet [J]. Acta Materialia, 2005, 53(14): 3821–3831. doi: 10.1016/j.actamat.2005.03.054
    [110] THAMBURAJA P. Constitutive equations for martensitic reorientation and detwinning in shape-memory alloys [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(4): 825–856. doi: 10.1016/j.jmps.2004.11.004
    [111] BARTON N R, BENSON D J, BECKER R. Crystal level continuum modelling of phase transformations: the αε transformation in iron [J]. Modelling and Simulation in Materials Science and Engineering, 2005, 13(5): 707–731. doi: 10.1088/0965-0393/13/5/006
    [112] AMOUZOU K E K, RICHETON T, ROTH A, et al. Micromechanical modeling of hardening mechanisms in commercially pure α-titanium in tensile condition [J]. International Journal of Plasticity, 2016, 80: 222–240. doi: 10.1016/j.ijplas.2015.09.008
    [113] GURAO N P, KAPOOR R, SUWAS S. Deformation behaviour of commercially pure titanium at extreme strain rates [J]. Acta Materialia, 2011, 59(9): 3431–3446. doi: 10.1016/j.actamat.2011.02.018
    [114] MEREDITH C S, LLOYD J T, SANO T. The quasi-static and dynamic response of fine-grained Mg alloy AMX602: an experimental and computational study [J]. Materials Science and Engineering A, 2016, 673: 73–82. doi: 10.1016/j.msea.2016.07.035
    [115] ROHATGI A, VECCHIO K S. The variation of dislocation density as a function of the stacking fault energy in shock-deformed FCC materials [J]. Materials Science and Engineering A, 2002, 328(1/2): 256–266.
    [116] KALIDINDI S R. Incorporation of deformation twinning in crystal plasticity models [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(2): 267–290. doi: 10.1016/S0022-5096(97)00051-3
    [117] CLAYTON J D. Nonlinear elastic and inelastic models for shock compression of crystalline solids [M]. Cham: Springer International Publishing, 2019.
    [118] CLAYTON J. A continuum description of nonlinear elasticity, slip and twinning, with application to sapphire [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2101): 307–334. doi: 10.1098/rspa.2008.0281
    [119] SALEM A A, KALIDINDI S R, DOHERTY R D, et al. Strain hardening due to deformation twinning in α-titanium: mechanisms [J]. Metallurgical and Materials Transactions A, 2006, 37(1): 259–268. doi: 10.1007/s11661-006-0171-2
    [120] SALEM A A, KALIDINDI S R, SEMIATIN S L. Strain hardening due to deformation twinning in α-titanium: constitutive relations and crystal-plasticity modeling [J]. Acta Materialia, 2005, 53(12): 3495–3502. doi: 10.1016/j.actamat.2005.04.014
    [121] KALIDINDI S R. A crystal plasticity framework for deformation twinning [M]//Continuum Scale Simulation of Engineering Materials. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005: 543–560.
    [122] ARDELJAN M, BEYERLEIN I J, MCWILLIAMS B A, et al. Strain rate and temperature sensitive multi-level crystal plasticity model for large plastic deformation behavior: application to AZ31 magnesium alloy [J]. International Journal of Plasticity, 2016, 83: 90–109. doi: 10.1016/j.ijplas.2016.04.005
    [123] ARDELJAN M, MCCABE R J, BEYERLEIN I J, et al. Explicit incorporation of deformation twins into crystal plasticity finite element models [J]. Computer Methods in Applied Mechanics and Engineering, 2015, 295: 396–413. doi: 10.1016/j.cma.2015.07.003
    [124] BEYERLEIN I J, TOMÉ C N. A dislocation-based constitutive law for pure Zr including temperature effects [J]. International Journal of Plasticity, 2008, 24(5): 867–895. doi: 10.1016/j.ijplas.2007.07.017
    [125] MADEC R, DEVINCRE B, KUBIN L P. From dislocation junctions to forest hardening [J]. Physical Review Letters, 2002, 89(25): 255508. doi: 10.1103/PhysRevLett.89.255508
    [126] SONG S G, GRAY G T III. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti: Ⅰ. application of the coincidence site lattice (CSL) theory to twinning problems in hcp structures [J]. Acta Metallurgica et Materialia, 1995, 43(6): 2325–2337. doi: 10.1016/0956-7151(94)00433-1
    [127] SONG S G, GRAY G T III. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti: Ⅱ. TEM study of twin morphology and defect reactions during twinning [J]. Acta Metallurgica et Materialia, 1995, 43(6): 2339–2350. doi: 10.1016/0956-7151(94)00434-X
    [128] SONG S G, GRAY G T. Influence of temperature and strain rate on slip and twinning behavior of Zr [J]. Metallurgical and Materials Transactions A, 1995, 26(10): 2665–2675. doi: 10.1007/BF02669423
    [129] 朱兆祥, 李永池, 王肖钧. 爆炸作用下钢板层裂的数值分析 [J]. 应用数学和力学, 1981, 2(4): 353–368.

    ZHU Z X, LI Y C, WANG X J. Numerical analysis of the spallation of steel target under the explosive loading [J]. Applied Mathematics and Mechanics, 1981, 2(4): 353–368.
    [130] RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. doi: 10.1063/1.1700005
    [131] ZHANG K S, ZHANG D, FENG R, et al. Microdamage in polycrystalline ceramics under dynamic compression and tension [J]. Journal of Applied Physics, 2005, 98(2): 023505. doi: 10.1063/1.1944908
    [132] LLOYD J T, MATEJUNAS A J, BECKER R, et al. Dynamic tensile failure of rolled magnesium: simulations and experiments quantifying the role of texture and second-phase particles [J]. International Journal of Plasticity, 2019, 114: 174–195. doi: 10.1016/j.ijplas.2018.11.002
    [133] LING C, BESSON J, FOREST S, et al. An elastoviscoplastic model for porous single crystals at finite strains and its assessment based on unit cell simulations [J]. International Journal of Plasticity, 2016, 84: 58–87. doi: 10.1016/j.ijplas.2016.05.001
    [134] NGUYEN T, LUSCHER D J, WILKERSON J W. A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals [J]. Journal of the Mechanics and Physics of Solids, 2017, 108: 1–29. doi: 10.1016/j.jmps.2017.07.020
    [135] NGUYEN T, LUSCHER D J, WILKERSON J W. The role of elastic and plastic anisotropy in intergranular spall failure [J]. Acta Materialia, 2019, 168: 1–12. doi: 10.1016/j.actamat.2019.01.033
    [136] BAI Y L, DODD B. Adiabatic shear localization: occurrence, theories, and applications [M]. Oxford: Pergamon Press, 1992.
    [137] DODD B, BAI Y L. Adiabatic shear localization: frontiers and advances [M]. Elsevier, 2012.
    [138] ZENER C, HOLLOMON J H. Effect of strain rate upon plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1): 22–32. doi: 10.1063/1.1707363
    [139] HINES J A, VECCHIO K S, AHZI S. A model for microstructure evolution in adiabatic shear bands [J]. Metallurgical and Materials Transactions A, 1998, 29(1): 191–203. doi: 10.1007/s11661-998-0172-4
    [140] LEE W B, WANG H, CHAN C Y, et al. Finite element modelling of shear angle and cutting force variation induced by material anisotropy in ultra-precision diamond turning [J]. International Journal of Machine Tools and Manufacture, 2013, 75: 82–86. doi: 10.1016/j.ijmachtools.2013.09.007
    [141] BRONKHORST C A, HANSEN B L, CERRETA E K, et al. Modeling the microstructural evolution of metallic polycrystalline materials under localization conditions [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(11): 2351–2383. doi: 10.1016/j.jmps.2007.03.019
    [142] WRIGHT T W. 绝热剪切带的数理分析 [M]. 李云凯, 孙川, 王云飞, 译. 北京: 北京理工大学出版社, 2013.

    WRIGHT T W. The physics and mathematics of adiabatic shear bands [M]. Translated by LI Y K, SUN C, WANG Y F. Beijing: Beijing Institute of Technology Press, 2003.
    [143] BARGMANN S, EKH M. Microscopic temperature field prediction during adiabatic loading using gradient extended crystal plasticity [J]. International Journal of Solids and Structures, 2013, 50(6): 899–906. doi: 10.1016/j.ijsolstr.2012.11.010
    [144] CULVER R S. Thermal instability strain in dynamic plastic deformation [M]//Metallurgical Effects at High Strain Rates. Boston: Springer, 1973: 519–530.
    [145] BAI Y L. A criterion for thermo-plastic shear instability [M]//Shock Waves and High-Strain-Rate Phenomena in Metals. Boston: Springer, 1981: 277–284.
    [146] SCHOENFELD S E, WRIGHT T W. A failure criterion based on material instability [J]. International Journal of Solids and Structures, 2003, 40(12): 3021–3037. doi: 10.1016/S0020-7683(03)00059-3
    [147] ZHANG Z, EAKINS D E, DUNNE F P E. On the formation of adiabatic shear bands in textured HCP polycrystals [J]. International Journal of Plasticity, 2016, 79: 196–216. doi: 10.1016/j.ijplas.2015.12.004
    [148] RECHT R F. Catastrophic thermoplastic shear [J]. Journal of Applied Mechanics, 1964, 31(2): 189–193. doi: 10.1115/1.3629585
    [149] DUSZEK-PERZYNA M K, PERZYNA P. Analysis of the influence of non-schmid and thermal effects on adiabatic shear band localization in elastic-plastic single crystals [M]//Finite Inelastic Deformations: Theory and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992: 155–165.
    [150] DUSZEK-PERZYNA M K, PERZYNA P. Adiabatic shear band localization in elastic-plastic single crystals [J]. International Journal of Solids and Structures, 1993, 30(1): 61–89. doi: 10.1016/0020-7683(93)90132-Q
    [151] DUSZEK-PERZYNA M K, PERZYNA P. Adiabatic shear band localization of inelastic single crystals in symmetric double-slip process [J]. Archive of Applied Mechanics, 1996, 66(6): 369. doi: 10.1007/s004190050076
    [152] RITTEL D, WANG Z G, MERZER M. Adiabatic shear failure and dynamic stored energy of cold work [J]. Physical Review Letters, 2006, 96(7): 075502. doi: 10.1103/PhysRevLett.96.075502
    [153] BOUBAKER H B, MAREAU C, AYED Y, et al. Development of a hyperelastic constitutive model based on the crystal plasticity theory for the simulation of machining operations [J]. Procedia CIRP, 2019, 82: 20–25. doi: 10.1016/j.procir.2019.04.336
  • 加载中
图(18) / 表(5)
计量
  • 文章访问数:  7201
  • HTML全文浏览量:  3180
  • PDF下载量:  176
出版历程
  • 收稿日期:  2019-12-31
  • 修回日期:  2020-01-17

目录

/

返回文章
返回