具有梯度型刚度折叠收缩管的吸能性能

陈伟东 门恒 田晓耕

陈伟东, 门恒, 田晓耕. 具有梯度型刚度折叠收缩管的吸能性能[J]. 高压物理学报, 2020, 34(5): 055301. doi: 10.11858/gywlxb.20190873
引用本文: 陈伟东, 门恒, 田晓耕. 具有梯度型刚度折叠收缩管的吸能性能[J]. 高压物理学报, 2020, 34(5): 055301. doi: 10.11858/gywlxb.20190873
CHEN Weidong, MEN Heng, TIAN Xiaogeng. Energy Absorption of Folded Shrink Tubes with Gradient Stiffness[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055301. doi: 10.11858/gywlxb.20190873
Citation: CHEN Weidong, MEN Heng, TIAN Xiaogeng. Energy Absorption of Folded Shrink Tubes with Gradient Stiffness[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 055301. doi: 10.11858/gywlxb.20190873

具有梯度型刚度折叠收缩管的吸能性能

doi: 10.11858/gywlxb.20190873
基金项目: 国家自然科学基金(11732007)
详细信息
    作者简介:

    陈伟东(1996-),男,硕士研究生,主要从事折叠结构的吸能特性研究. E-mail:chen_weidong04@163.com

    通讯作者:

    田晓耕(1967-),男,博士,教授,主要从事超轻结构吸能及优化、非经典热弹理论研究. E-mail:tiansu@mail.xjtu.edu.cn

  • 中图分类号: O347; TB124

Energy Absorption of Folded Shrink Tubes with Gradient Stiffness

  • 摘要: 薄壁管是一种常见的吸能结构,在薄壁管中引入折纹可以诱导薄壁管发生变形,有效降低薄壁管屈曲的初始峰值力并提高其能量吸收。目前,大部分折纹管受到轴向压缩时,初始峰值力后的压溃力下降显著,降低了折纹管的吸能性能。为有效提高折纹管的吸能性能,并降低折纹管的初始峰值力,在方管中引入不同形式的折纹得到折叠收缩管,利用ABAQUS/Explicit模拟设计折叠收缩管的准静态压缩,得到其变形及力与位移曲线。结果显示,与传统方管和菱形折纹管相比,折叠收缩管的初始峰值力显著降低,且压溃力随着压缩距离的增加呈梯度上升趋势,大幅提升了薄壁管的能量吸收性能。另外,系统研究了折叠收缩管的几何参数对其性能的影响,获得了性能优异的折纹管。

     

  • 图  部分折叠收缩管结构

    Figure  1.  Partial structure of folded shrink tube part

    图  折纹管压缩示意图

    Figure  2.  Schematic diagram of folded tube compression

    图  折纹管材的应力-应变曲线

    Figure  3.  Material engineering stress–strain curve

    图  准静态压缩下方管和菱形管的变形模式

    Figure  4.  Deformation modes of square and folded tube under quasi-static compression

    图  准静态压缩下方管和菱形管的力-位移曲线

    Figure  5.  Force and displacement curves of square and folded tube under quasi-static compression

    图  折叠收缩管的变形过程

    Figure  6.  Deformation of folded shrink tube

    图  折叠收缩管的力-位移曲线

    Figure  7.  Force-displacement curves of the folded shrink tube

    图  两端结构不同的折叠收缩管的力-位移曲线

    Figure  8.  Force-displacement curves of the folded tubes with different structures at both ends

    图  连接结构不同的折叠收缩管力-位移曲线

    Figure  9.  Force-displacement curves of the folded tubes with different connection structures

    图  10  不同边长和壁厚时折叠收缩管的力-位移曲线

    Figure  10.  Force-displacement curves of folded shrink tubes with different edge length and wall thickness

    表  1  折纹管边长与壁厚的对应关系

    Table  1.   The corresponding relationship between the edge length and the wall thickness of the folded tube

    b/mmt/mmb/t
    401.50026.667
    501.20041.667
    601.00060.000
    700.85781.667
    800.750106.667
    下载: 导出CSV

    表  2  折纹管准静态压缩模拟结果

    Table  2.   Quasi-static compression simulation results of folded tube

    Thin walled tubepImax/kNpIm/kNWI/JpIImax/kNpIIm/kNWII/Jpmax/kNpm/kN
    C35.5911.5335.5911.53
    S23.8818.1125.3218.11
    C60-25.10.4-014.5811.97707.9720.8320.0360.4278.6117.03
    C60-30.0.3-015.3513.26512.7231.3624.63616.3531.3618.40
    C60-30.10.2-017.0415.34343.0529.3620.49814.8429.3619.08
    C60-30.10.3-014.6112.99404.0332.2722.78709.7332.2718.58
    C60-30.10.4-013.0611.74476.6828.0022.86465.7639.2217.22
    C60-30.20.3-014.1112.96323.8535.6921.68776.2235.6918.75
    C60-30.30.3-014.0413.32272.3237.7121.62841.0737.7119.33
    C60-35.10.4-012.4311.69337.3925.6421.76603.2028.7218.22
    S60-25.10.4-814.2912.92564.3926.7519.45241.6566.0220.30
    S60-30.0.3-815.2913.60563.6927.2823.58464.3630.0018.09
    S60-30.10.2-816.7415.38399.1627.9023.16951.4427.9020.17
    S60-30.10.3-814.5613.30446.6327.7723.34709.2527.7718.65
    S60-30.10.4-412.9111.75487.1925.7122.00429.7630.5716.43
    S60-30.10.4-813.0211.99506.9724.9621.91390.7030.7816.41
    S60-30.10.4-1213.3312.27529.4324.0321.85390.0435.7516.55
    S60-30.10.4-1613.5412.44547.4224.4522.26462.7138.4816.34
    S60-30.10.4-2013.7112.62565.2724.7321.60465.2765.5716.37
    S60-30.20.3-814.0813.19357.5130.5422.70861.0230.5418.95
    S60-30.30.3-413.9613.26281.1437.3522.36918.4137.3519.86
    S60-30.30.3-814.0113.42294.3228.1722.19941.4330.3919.46
    S60-30.30.3-1214.1113.62308.9527.6721.66874.3131.5419.24
    S60-30.30.3-1614.4813.83331.4126.9821.25746.8833.4419.55
    S60-30.30.3-2014.9614.15335.6125.9221.36801.9445.1519.70
    S60-35.10.4-812.4711.83345.9227.4222.45760.7327.4217.89
    H60-25.10.4-1615.0213.02786.99102.4161.20519.62102.4118.95
    H60-30.0.3-1615.8913.74556.0737.1529.12830.2237.1520.10
    H60-30.10.2-1617.3415.76375.5943.8125.511149.3143.8122.14
    H60-30.10.3-1615.1313.46437.6536.1623.75973.2336.1620.48
    H60-30.10.4-813.4511.98495.5439.0127.82767.1939.0118.32
    H60-30.10.4-1613.5812.16499.7739.6030.27844.3339.6019.48
    H60-30.10.4-2413.6912.41517.1344.8532.16804.2260.9720.89
    H60-30.10.4-3213.8412.65538.2548.4932.33759.0574.9021.46
    H60-30.10.4-4014.0912.85557.0435.2128.13420.9678.5321.89
    H60-30.20.3-1614.4713.37350.0636.0125.121075.9236.0120.68
    H60-30.30.3-814.2913.33270.2836.4323.481097.2236.4320.37
    H60-30.30.3-1614.3113.62286.5444.6725.141195.9444.6721.59
    H60-30.30.3-2414.5313.85291.3746.2926.561271.3246.2922.68
    H60-30.30.3-3214.8314.11307.1243.2727.791233.8343.2723.61
    H60-30.30.3-4015.2014.32311.1842.9826.571221.3042.9822.59
    H60-35.10.4-1612.7812.01352.4331.2525.851013.3331.2519.94
    下载: 导出CSV

    表  3  折纹管吸能性能对比

    Table  3.   Comparison of energy absorption performance of folded tubes

    Relative to tube C/%Relative to tube S/%
    $\delta $Imax$\delta $Im$\delta $max$\delta $m$\delta $Imax$\delta $m
    C60-35.10.4-0−65.071.39−19.3058.02−47.950.61
    S60-30.30.3-8−60.6416.39−14.6168.78−41.337.45
    H60-30.30.3-32−58.3322.3821.58104.77−37.9030.37
    下载: 导出CSV

    表  4  连接结构参数改变

    Table  4.   Connection structure parameters change

    Group No.α1/(°)θ1/(°)x1/mm
    125104
    30104
    35104
    23003
    30103
    30203
    30303
    330102
    30103
    30104
    下载: 导出CSV
  • [1] SINGACE A A. Axial crushing analysis of tubes deforming in the multi-lobe mode [J]. International Journal of Mechanical Sciences, 1999, 41(7): 865–890. doi: 10.1016/S0020-7403(98)00052-6
    [2] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [3] SONG J, CHEN Y, LU G X. Light-weight thin-walled structures with patterned windows under axial crushing [J]. International Journal of Mechanical Sciences, 2013, 66: 239–248. doi: 10.1016/j.ijmecsci.2012.11.014
    [4] CHENG Q W, ALTENHOF W, LI L. Experimental investigations on the crush behaviour of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities [J]. Thin-Walled Structures, 2006, 44(4): 441–454. doi: 10.1016/j.tws.2006.03.017
    [5] HAN H P, TAHERI F, PEG G N. Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout [J]. Thin-Walled Structures, 2007, 45(3): 283–300. doi: 10.1016/j.tws.2007.02.010
    [6] DANESHI G H, HOSSEINIPOUR S J. Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression [J]. Materials & Design, 2002, 23(7): 611–617. doi: 10.1016/S0261-3069(02)00052-3
    [7] EYVAZIAN A, HABIBI M K, HAMOUDA A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes [J]. Materials & Design, 2014, 54: 1028–1038. doi: 10.1016/j.matdes.2013.09.031
    [8] ZHANG X W, SU H, YU T X. Energy absorption of an axially crushed square tube with a buckling initiator [J]. International Journal of Impact Engineering, 2009, 36(3): 402–417. doi: 10.1016/j.ijimpeng.2008.02.002
    [9] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
    [10] KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency [J]. Thin-Walled Structures, 2002, 40(4): 311–327. doi: 10.1016/S0263-8231(01)00069-6
    [11] ZHANG X, HU H H. Crushing analysis of polygonal columns and angle elements [J]. International Journal of Impact Engineering, 2010, 37(4): 441–451. doi: 10.1016/j.ijimpeng.2009.06.009
    [12] TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns [J]. Thin-Walled Structures, 2012, 51: 112–120. doi: 10.1016/j.tws.2011.10.005
    [13] 李笑, 李明. 折纸及其折痕设计研究综述 [J]. 力学学报, 2018, 50(3): 467–476. doi: 10.6052/0459-1879-18-031

    LI X, LI M. A review of origami and its crease design [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467–476. doi: 10.6052/0459-1879-18-031
    [14] SONG J, CHEN Y, LU G X. Axial crushing of thin-walled structures with origami patterns [J]. Thin-Walled Structures, 2012, 54: 65–71. doi: 10.1016/j.tws.2012.02.007
    [15] MA J Y, HOU D G, CHEN Y, et al. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation [J]. Thin-Walled Structures, 2016, 100: 38–47. doi: 10.1016/j.tws.2015.11.023
    [16] MA J Y, YOU Z. Energy absorption of thin-walled square tubes with a prefolded origami pattern—part I: geometry and numerical simulation [J]. Journal of Applied Mechanics, 2014, 81(1): 011003. doi: 10.1115/1.4024405
    [17] ZHOU C H, WANG B, LUO H Z, et al. Quasi-static axial compression of origami crash boxes [J]. International Journal of Applied Mechanics, 2017, 9(5): 1750066. doi: 10.1142/S1758825117500661
    [18] ZHOU C H, WANG B, MA J Y, et al. Dynamic axial crushing of origami crash boxes [J]. International Journal of Mechanical Sciences, 2016, 118: 1–12. doi: 10.1016/j.ijmecsci.2016.09.001
    [19] YANG K, XU S Q, SHEN J H, et al. Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification [J]. Thin-Walled Structures, 2016, 103: 33–44. doi: 10.1016/j.tws.2016.02.007
    [20] YUAN L, SHI H Y, MA J Y, et al. Quasi-static impact of origami crash boxes with various profiles [J]. Thin-Walled Structures, 2019, 141: 435–446. doi: 10.1016/j.tws.2019.04.028
    [21] WANG B, ZHOU C H. The imperfection-sensitivity of origami crash boxes [J]. International Journal of Mechanical Sciences, 2017, 121: 58–66. doi: 10.1016/j.ijmecsci.2016.11.027
    [22] ZHOU C H, ZHOU Y, WANG B. Crashworthiness design for trapezoid origami crash boxes [J]. Thin-Walled Structures, 2017, 117: 257–267. doi: 10.1016/j.tws.2017.03.022
    [23] XIE R K, HOU D G, MA J Y, et al. Geometrically graded origami tubes [C]//Proceedings of ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Carolina: ASME, 2016.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  4747
  • HTML全文浏览量:  1913
  • PDF下载量:  35
出版历程
  • 收稿日期:  2019-12-26
  • 修回日期:  2020-01-20

目录

    /

    返回文章
    返回