Energy Absorption of Folded Shrink Tubes with Gradient Stiffness
-
摘要: 薄壁管是一种常见的吸能结构,在薄壁管中引入折纹可以诱导薄壁管发生变形,有效降低薄壁管屈曲的初始峰值力并提高其能量吸收。目前,大部分折纹管受到轴向压缩时,初始峰值力后的压溃力下降显著,降低了折纹管的吸能性能。为有效提高折纹管的吸能性能,并降低折纹管的初始峰值力,在方管中引入不同形式的折纹得到折叠收缩管,利用ABAQUS/Explicit模拟设计折叠收缩管的准静态压缩,得到其变形及力与位移曲线。结果显示,与传统方管和菱形折纹管相比,折叠收缩管的初始峰值力显著降低,且压溃力随着压缩距离的增加呈梯度上升趋势,大幅提升了薄壁管的能量吸收性能。另外,系统研究了折叠收缩管的几何参数对其性能的影响,获得了性能优异的折纹管。Abstract: Thin-walled tube is a common energy-absorbing structure. The introduction of folds in thin-walled tube can induce the deformation of thin-walled tube, reduce the initial peak force of buckling of thin-walled tube and improve the energy absorption of thin-walled tube effectively. At present, when the folded tubes subjects to axial compression, the crushing force decreases significantly after the initial peak force, which lowers the energy absorption performance of folded tubes. In order to further reduce the initial peak force and increase the total energy absorbed of the folded tube, different forms of folded tube are introduced into the square tube to obtain a folded shrink tube. The relation between force and displacement and deformation of the designed folded tube under the quasi-static compression is obtained by using ABAQUS/Explicit. The results show that the collapse force of the folded shrink tube is in the form of a gradient during the compression process. Compared with traditional square tube and diamond tube, the folded shrink tube not only has lower initial peak force, but also can greatly improve the total energy absorption. The influence of geometric parameters on the performance of the folded tube was studied systematically. The best performance folded shrink tubes were obtained.
-
Key words:
- folded tube /
- energy absorption /
- quasi-static compression /
- finite element /
- gradient stiffness
-
表 1 折纹管边长与壁厚的对应关系
Table 1. The corresponding relationship between the edge length and the wall thickness of the folded tube
b/mm t/mm b/t 40 1.500 26.667 50 1.200 41.667 60 1.000 60.000 70 0.857 81.667 80 0.750 106.667 表 2 折纹管准静态压缩模拟结果
Table 2. Quasi-static compression simulation results of folded tube
Thin walled tube pImax/kN pIm/kN WI/J pIImax/kN pIIm/kN WII/J pmax/kN pm/kN C 35.59 11.53 35.59 11.53 S 23.88 18.11 25.32 18.11 C60-25.10.4-0 14.58 11.97 707.97 20.83 20.03 60.42 78.61 17.03 C60-30.0.3-0 15.35 13.26 512.72 31.36 24.63 616.35 31.36 18.40 C60-30.10.2-0 17.04 15.34 343.05 29.36 20.49 814.84 29.36 19.08 C60-30.10.3-0 14.61 12.99 404.03 32.27 22.78 709.73 32.27 18.58 C60-30.10.4-0 13.06 11.74 476.68 28.00 22.86 465.76 39.22 17.22 C60-30.20.3-0 14.11 12.96 323.85 35.69 21.68 776.22 35.69 18.75 C60-30.30.3-0 14.04 13.32 272.32 37.71 21.62 841.07 37.71 19.33 C60-35.10.4-0 12.43 11.69 337.39 25.64 21.76 603.20 28.72 18.22 S60-25.10.4-8 14.29 12.92 564.39 26.75 19.45 241.65 66.02 20.30 S60-30.0.3-8 15.29 13.60 563.69 27.28 23.58 464.36 30.00 18.09 S60-30.10.2-8 16.74 15.38 399.16 27.90 23.16 951.44 27.90 20.17 S60-30.10.3-8 14.56 13.30 446.63 27.77 23.34 709.25 27.77 18.65 S60-30.10.4-4 12.91 11.75 487.19 25.71 22.00 429.76 30.57 16.43 S60-30.10.4-8 13.02 11.99 506.97 24.96 21.91 390.70 30.78 16.41 S60-30.10.4-12 13.33 12.27 529.43 24.03 21.85 390.04 35.75 16.55 S60-30.10.4-16 13.54 12.44 547.42 24.45 22.26 462.71 38.48 16.34 S60-30.10.4-20 13.71 12.62 565.27 24.73 21.60 465.27 65.57 16.37 S60-30.20.3-8 14.08 13.19 357.51 30.54 22.70 861.02 30.54 18.95 S60-30.30.3-4 13.96 13.26 281.14 37.35 22.36 918.41 37.35 19.86 S60-30.30.3-8 14.01 13.42 294.32 28.17 22.19 941.43 30.39 19.46 S60-30.30.3-12 14.11 13.62 308.95 27.67 21.66 874.31 31.54 19.24 S60-30.30.3-16 14.48 13.83 331.41 26.98 21.25 746.88 33.44 19.55 S60-30.30.3-20 14.96 14.15 335.61 25.92 21.36 801.94 45.15 19.70 S60-35.10.4-8 12.47 11.83 345.92 27.42 22.45 760.73 27.42 17.89 H60-25.10.4-16 15.02 13.02 786.99 102.41 61.20 519.62 102.41 18.95 H60-30.0.3-16 15.89 13.74 556.07 37.15 29.12 830.22 37.15 20.10 H60-30.10.2-16 17.34 15.76 375.59 43.81 25.51 1149.31 43.81 22.14 H60-30.10.3-16 15.13 13.46 437.65 36.16 23.75 973.23 36.16 20.48 H60-30.10.4-8 13.45 11.98 495.54 39.01 27.82 767.19 39.01 18.32 H60-30.10.4-16 13.58 12.16 499.77 39.60 30.27 844.33 39.60 19.48 H60-30.10.4-24 13.69 12.41 517.13 44.85 32.16 804.22 60.97 20.89 H60-30.10.4-32 13.84 12.65 538.25 48.49 32.33 759.05 74.90 21.46 H60-30.10.4-40 14.09 12.85 557.04 35.21 28.13 420.96 78.53 21.89 H60-30.20.3-16 14.47 13.37 350.06 36.01 25.12 1075.92 36.01 20.68 H60-30.30.3-8 14.29 13.33 270.28 36.43 23.48 1097.22 36.43 20.37 H60-30.30.3-16 14.31 13.62 286.54 44.67 25.14 1195.94 44.67 21.59 H60-30.30.3-24 14.53 13.85 291.37 46.29 26.56 1271.32 46.29 22.68 H60-30.30.3-32 14.83 14.11 307.12 43.27 27.79 1233.83 43.27 23.61 H60-30.30.3-40 15.20 14.32 311.18 42.98 26.57 1221.30 42.98 22.59 H60-35.10.4-16 12.78 12.01 352.43 31.25 25.85 1013.33 31.25 19.94 表 3 折纹管吸能性能对比
Table 3. Comparison of energy absorption performance of folded tubes
Relative to tube C/% Relative to tube S/% $\delta $Imax $\delta $Im $\delta $max $\delta $m $\delta $Imax $\delta $m C60-35.10.4-0 −65.07 1.39 −19.30 58.02 −47.95 0.61 S60-30.30.3-8 −60.64 16.39 −14.61 68.78 −41.33 7.45 H60-30.30.3-32 −58.33 22.38 21.58 104.77 −37.90 30.37 表 4 连接结构参数改变
Table 4. Connection structure parameters change
Group No. α1/(°) θ1/(°) x1/mm 1 25 10 4 30 10 4 35 10 4 2 30 0 3 30 10 3 30 20 3 30 30 3 3 30 10 2 30 10 3 30 10 4 -
[1] SINGACE A A. Axial crushing analysis of tubes deforming in the multi-lobe mode [J]. International Journal of Mechanical Sciences, 1999, 41(7): 865–890. doi: 10.1016/S0020-7403(98)00052-6 [2] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137 [3] SONG J, CHEN Y, LU G X. Light-weight thin-walled structures with patterned windows under axial crushing [J]. International Journal of Mechanical Sciences, 2013, 66: 239–248. doi: 10.1016/j.ijmecsci.2012.11.014 [4] CHENG Q W, ALTENHOF W, LI L. Experimental investigations on the crush behaviour of AA6061-T6 aluminum square tubes with different types of through-hole discontinuities [J]. Thin-Walled Structures, 2006, 44(4): 441–454. doi: 10.1016/j.tws.2006.03.017 [5] HAN H P, TAHERI F, PEG G N. Quasi-static and dynamic crushing behaviors of aluminum and steel tubes with a cutout [J]. Thin-Walled Structures, 2007, 45(3): 283–300. doi: 10.1016/j.tws.2007.02.010 [6] DANESHI G H, HOSSEINIPOUR S J. Grooves effect on crashworthiness characteristics of thin-walled tubes under axial compression [J]. Materials & Design, 2002, 23(7): 611–617. doi: 10.1016/S0261-3069(02)00052-3 [7] EYVAZIAN A, HABIBI M K, HAMOUDA A M, et al. Axial crushing behavior and energy absorption efficiency of corrugated tubes [J]. Materials & Design, 2014, 54: 1028–1038. doi: 10.1016/j.matdes.2013.09.031 [8] ZHANG X W, SU H, YU T X. Energy absorption of an axially crushed square tube with a buckling initiator [J]. International Journal of Impact Engineering, 2009, 36(3): 402–417. doi: 10.1016/j.ijimpeng.2008.02.002 [9] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0 [10] KIM H S. New extruded multi-cell aluminum profile for maximum crash energy absorption and weight efficiency [J]. Thin-Walled Structures, 2002, 40(4): 311–327. doi: 10.1016/S0263-8231(01)00069-6 [11] ZHANG X, HU H H. Crushing analysis of polygonal columns and angle elements [J]. International Journal of Impact Engineering, 2010, 37(4): 441–451. doi: 10.1016/j.ijimpeng.2009.06.009 [12] TANG Z L, LIU S T, ZHANG Z H. Energy absorption properties of non-convex multi-corner thin-walled columns [J]. Thin-Walled Structures, 2012, 51: 112–120. doi: 10.1016/j.tws.2011.10.005 [13] 李笑, 李明. 折纸及其折痕设计研究综述 [J]. 力学学报, 2018, 50(3): 467–476. doi: 10.6052/0459-1879-18-031LI X, LI M. A review of origami and its crease design [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467–476. doi: 10.6052/0459-1879-18-031 [14] SONG J, CHEN Y, LU G X. Axial crushing of thin-walled structures with origami patterns [J]. Thin-Walled Structures, 2012, 54: 65–71. doi: 10.1016/j.tws.2012.02.007 [15] MA J Y, HOU D G, CHEN Y, et al. Quasi-static axial crushing of thin-walled tubes with a kite-shape rigid origami pattern: numerical simulation [J]. Thin-Walled Structures, 2016, 100: 38–47. doi: 10.1016/j.tws.2015.11.023 [16] MA J Y, YOU Z. Energy absorption of thin-walled square tubes with a prefolded origami pattern—part I: geometry and numerical simulation [J]. Journal of Applied Mechanics, 2014, 81(1): 011003. doi: 10.1115/1.4024405 [17] ZHOU C H, WANG B, LUO H Z, et al. Quasi-static axial compression of origami crash boxes [J]. International Journal of Applied Mechanics, 2017, 9(5): 1750066. doi: 10.1142/S1758825117500661 [18] ZHOU C H, WANG B, MA J Y, et al. Dynamic axial crushing of origami crash boxes [J]. International Journal of Mechanical Sciences, 2016, 118: 1–12. doi: 10.1016/j.ijmecsci.2016.09.001 [19] YANG K, XU S Q, SHEN J H, et al. Energy absorption of thin-walled tubes with pre-folded origami patterns: numerical simulation and experimental verification [J]. Thin-Walled Structures, 2016, 103: 33–44. doi: 10.1016/j.tws.2016.02.007 [20] YUAN L, SHI H Y, MA J Y, et al. Quasi-static impact of origami crash boxes with various profiles [J]. Thin-Walled Structures, 2019, 141: 435–446. doi: 10.1016/j.tws.2019.04.028 [21] WANG B, ZHOU C H. The imperfection-sensitivity of origami crash boxes [J]. International Journal of Mechanical Sciences, 2017, 121: 58–66. doi: 10.1016/j.ijmecsci.2016.11.027 [22] ZHOU C H, ZHOU Y, WANG B. Crashworthiness design for trapezoid origami crash boxes [J]. Thin-Walled Structures, 2017, 117: 257–267. doi: 10.1016/j.tws.2017.03.022 [23] XIE R K, HOU D G, MA J Y, et al. Geometrically graded origami tubes [C]//Proceedings of ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Carolina: ASME, 2016.