内爆驱动式超高速发射技术的初步研究

王马法 HIGGINSAndrew J 焦德志 黄洁 柳森

王马法, HIGGINSAndrew J, 焦德志, 黄洁, 柳森. 内爆驱动式超高速发射技术的初步研究[J]. 高压物理学报, 2020, 34(3): 033301. doi: 10.11858/gywlxb.20190870
引用本文: 王马法, HIGGINSAndrew J, 焦德志, 黄洁, 柳森. 内爆驱动式超高速发射技术的初步研究[J]. 高压物理学报, 2020, 34(3): 033301. doi: 10.11858/gywlxb.20190870
WANG Mafa, HIGGINS Andrew J, JIAO Dezhi, HUANG Jie, LIU Sen. Preliminary Simulation and Experimental Study on Implosion-Driven Hypervelocity Launching Technology[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033301. doi: 10.11858/gywlxb.20190870
Citation: WANG Mafa, HIGGINS Andrew J, JIAO Dezhi, HUANG Jie, LIU Sen. Preliminary Simulation and Experimental Study on Implosion-Driven Hypervelocity Launching Technology[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033301. doi: 10.11858/gywlxb.20190870

内爆驱动式超高速发射技术的初步研究

doi: 10.11858/gywlxb.20190870
基金项目: 国家自然科学基金(11802330)
详细信息
    作者简介:

    王马法(1986-),男,博士,助理研究员,主要从事超高速发射与毁伤技术研究.E-mail:fujianwmf@163.com

    通讯作者:

    柳 森(1967-),男,博士,研究员,主要从事超高速碰撞与动能毁伤研究. E-mail:hvi@cardc.cn

  • 中图分类号: O521.3

Preliminary Simulation and Experimental Study on Implosion-Driven Hypervelocity Launching Technology

  • 摘要: 为获得10 km/s左右的超高速发射能力,以内爆发射器为研究对象,利用AUTODYN 2D软件对口径为8 mm的内爆发射器进行有限元仿真分析,获得了典型状态下的弹丸发射速度。研制了口径为8 mm的内爆发射器,并在压缩管中填充5 MPa氦气进行实验,分别获得了0.55 g铝合金弹丸7.95 km/s和0.37 g镁合金弹丸10.28 km/s的发射速度,与有限元仿真计算结果的速度偏差分别为15.3%和3.7%。结果表明,设计的内爆发射器具备10 km/s发射能力,满足空间碎片撞击和防护研究的超高速发射需求。

     

  • 图  内爆式超高速发射器结构示意图[11]

    Figure  1.  Structural diagram of implosion-driven hypervelocity launcher[11]

    图  内爆式超高速发射器工作原理[11]

    Figure  2.  Working diagram of implosion launcher after ignition[11]

    图  8 mm口径内爆式发射装置工作过程

    Figure  3.  Launch process of 8 mm caliber implosion launcher

    图  不同充气压力下铝弹丸的速度-时间历史

    Figure  4.  Velocity-time history of aluminum projectiles with different filling pressure

    图  不同材料弹丸速度-时间历史

    Figure  5.  Velocity-time history of projectiles with different materials

    图  内爆式超高速发射器实物

    Figure  6.  Image of implosion-driven hypervelocity launcher

    图  实验装置布局示意图

    Figure  7.  Layout of experimental equipment

    图  ILT08实验发射器装置回收

    Figure  8.  Recycle launcher of test ILT08

    图  0.55 g铝合金弹丸速度测试结果

    Figure  9.  Experimental muzzle velocities of 0.55 g aluminum projectile

    图  10  0.37 g镁合金弹丸速度测试结果

    Figure  10.  Experimental muzzle velocities of 0.37 g magnesium projectile

    图  11  弹丸序列激光阴影成像结果

    Figure  11.  Projectile photos shot by sequence laser shadowgraph imager

    表  1  不同弹丸材料和充气压力下仿真计算参数

    Table  1.   Simulation parameters of launchers with different projectile materials and filling pressure

    No.Material of projectileFilling pressure/MPaDiameter of launch tube/mmDiameter of pump tube/mmMuzzle velocity/(km·s–1
    1Aluminum alloy4816 8.62
    2Aluminum alloy5816 9.17
    3Aluminum alloy6816 9.25
    4Magnesium alloy581610.66
    下载: 导出CSV

    表  2  内爆发射器实验相关参数

    Table  2.   Parameters of the implosion-driven launchers in tests

    No.Material of projectileMass of projectile/gFilling pressure/MPaDiameter of launch tube/mmDiameter of pump tube/mmMaximum velocity/(km·s–1
    ILT04Aluminum alloy0.555816 7.26
    ILT07 6.96
    ILT14 7.95
    ILT08Magnesium alloy0.375816 9.73
    ILT0910.28
    ILT11 9.36
    ILT12 9.77
    下载: 导出CSV
  • [1] HUNEAULT J, LOISEAU J, HIGGINS A J. Coupled lagrangian gasdynamic and structural hydrocode solvers for simulating an implosion-driven hypervelocity launcher [C]//51st AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition. Grapevine, 2013: 1–21.
    [2] 王翔, 王青松, 彭建祥, 等. 三级炮超高速发射技术在空间碎片防护研究中的初步应用 [C]//第八届全国空间碎片学术交流会. 北京, 2015: 350–358.

    WANG X, WANG Q S, PENG J X, et al. Preliminary application of three-stage gas gun hypervelocity launcher techniques in space debris protection research [C]//8th National Symposium on Space Debris. Beijing, 2015: 350–358.
    [3] 张旭平, 谭福利, 王桂吉, 等. 基于CQ4的磁驱动10 km/s以上超高速飞片发射 [C]//第八届全国空间碎片学术交流会. 北京, 2015: 385–390.

    ZHANG X P, TAN F L, WANG G J, et al. Magnetically driven flyer plates to velocities above 10 km/s on CQ4 [C]//8th National Symposium on Space Debris. Beijing, 2015: 385–390.
    [4] 文尚刚, 赵锋, 王建, 等. 气炮加载下炸药强爆轰驱动技术的初步实验研究 [J]. 高压物理学报, 2011, 25(1): 36–40. doi: 10.11858/gywlxb.2011.01.006

    WEN S G, ZHAO F, WANG J, et al. Primary experimental study on driving technique of strong detonation using gas gun [J]. Chinese Journal of High Pressure Physics, 2011, 25(1): 36–40. doi: 10.11858/gywlxb.2011.01.006
    [5] 赵士操, 宋振飞, 姬广富, 等. 一种基于二级轻气炮平台的超高速弹丸发射装置设计 [J]. 高压物理学报, 2011, 25(6): 557–564. doi: 10.11858/gywlxb.2011.06.012

    ZHAO S C, SONG Z F, JI G F, et al. A novel design of a hypervelocity launcher based on two-stage gas gun facilities [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557–564. doi: 10.11858/gywlxb.2011.06.012
    [6] 邢柏阳, 刘荣忠, 郭锐, 等. 强爆轰驱动超高速碎片发射装置设计因素分析 [J]. 国防科技大学学报, 2018(4): 151–158.

    XING B Y, LIU R Z, GUO R, et al. Analysis on design factors of hypervelocity fragment launcher using strong detonation drive [J]. Journal of National University of Defense Technology, 2018(4): 151–158.
    [7] 林俊德, 张向荣, 朱玉荣, 等. 超高速撞击实验的三级压缩气炮技术 [J]. 爆炸与冲击, 2012, 32(5): 483–489. doi: 10.3969/j.issn.1001-1455.2012.05.006

    LIN J D, ZHANG X R, ZHU Y R, et al. The technique of three-stage compressed-gas gun for hypervelocity impact [J]. Explosion and Shock Waves, 2012, 32(5): 483–489. doi: 10.3969/j.issn.1001-1455.2012.05.006
    [8] 王青松, 王翔, 郝龙, 等. 三级炮超高速发射技术研究进展 [J]. 高压物理学报, 2014, 28(3): 340–345.

    WANG Q S, WANG X, HAO L, et al. Progress on hypervelocity launcher techniques using a three-stage gun [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 340–345.
    [9] MOORE J E T. Explosive hypervelocity launchers: PIFR-051 [R]. Physics International Company, 1968.
    [10] WATSON J D. High-velocity explosively driven guns: CR-1533 [R]. Physics International Company, NASA, 1970.
    [11] LOISEAU J, HUNEAULT J, HIGGINS A J. Development of a linear implosion-driven hypervelocity launcher [J]. Procedia Engineering, 2013, 58: 77–87. doi: 10.1016/j.proeng.2013.05.011
    [12] HUNEAULT J, LOISEAU J, HILDEBRAND M, et al. Down-bore velocimetry of an explosively driven light-gas gun [J]. Procedia Engineering, 2015, 103: 230–236. doi: 10.1016/j.proeng.2015.04.031
    [13] HILDEBRAND M, HUNEAULT J, LOISEAU J, et al. Down-bore two-laser heterodyne velocimetry of an implosion-driven hypervelocity launcher [J]. AIP Conference Proceedings, 2017, 1793: 160009.
    [14] 田杨萌, 王莹. 炸药爆轰驱动高速击波管发射技术 [J]. 弹箭与制导学报, 2003, 23(3): 221–224.

    TIAN Y M, WANG Y. A propulsion technology of the fast shock tube driven by high explosive [J]. Journal of Projectiles Rockets Missiles and Guidance, 2003, 23(3): 221–224.
    [15] 北京工业学院八系. 爆炸及其作用(上册) [M]. 北京: 国防工业出版社, 1979: 214–219.

    No.8 Department of Beijing Industrial College. Explosion and its application [M]. Beijing: National Defense Industrial Press, 1979: 214–219.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  8858
  • HTML全文浏览量:  2754
  • PDF下载量:  46
出版历程
  • 收稿日期:  2019-12-23
  • 修回日期:  2020-01-20

目录

    /

    返回文章
    返回