Phenomenon of Local Densification in Negative Graded Metal Foam
-
摘要: 基于一维非线性的刚性-塑性硬化模型,研究了在恒速冲击作用下负梯度泡沫的冲击波控制方程和传播特性。采用LS-DYNA有限元软件对三维随机Voronoi技术生成的梯度泡沫金属模型进行数值模拟,验证了理论预测,并定义了冲击波模型下梯度泡沫材料的局部密实化应变与第二临界速度。通过对冲击速度、密度梯度、相对密度参数的影响研究发现:冲击波模型的理论解与有限元模型的数值解吻合较好,基于R-PH模型的冲击波理论能较好地预测负梯度泡沫金属的力学性能;局部密实化应变在不同冲击速度下存在3个增长阶段;密度梯度绝对值和相对密度越大,局部密实化应变越小,第二临界速度越大。最后讨论了负梯度泡沫中局部密实化现象对支撑端应力的影响。Abstract: Based on the one-dimensional nonlinear rigid-plastic hardening (R-PH) model, the control equations and mechanical response characteristics of the shock wave propagation of the negative graded foam under constant velocity impact are studied. The LS-DYNA finite element software is used to numerically simulate the graded metal foam model generated by the three-dimensional stochastic Voronoi technology to verify the theoretical prediction. The local densification strain and the second critical velocity of the graded foam material under the shock wave model are defined. By studying the effects of impact velocity, density gradient and relative density parameters, it is found that the theoretical solution of the shock wave model is in good agreement with the numerical solution of the finite element model. The shock wave theory based on the R-PH model can better predict the negative graded foam metal. The mechanical properties of the local densification strain have three growth stages at different impact velocities; the larger the absolute value of the density gradient and the relative density, the smaller the local densification strain and the larger the second critical velocity. Finally, the effect of local densification on the stress at the support end in the negative graded foam is explained.
-
表 1 本构模型参数
Table 1. Constitutive model parameters
ρs/(kg·m–3) E/GPa ν σys/MPa Et/GPa 2 700 69 0.3 76 0.69 -
[1] ASHBY M F, EVANS A, FLECK N A, et al. Metal foams: a design guide [M]. UK: Heinemann Publishers, 2000. [2] GIBSON L J. Mechanical behavior of metallic foams [J]. Annual Review of Materials Science, 2000, 30: 191–227. doi: 10.1146/annurev.matsci.30.1.191 [3] ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650–664. [4] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals [J]. International Journal of Solids and Structures, 2009, 46(22/23): 3988–3998. [5] ELNASRI I, PATTOFATTO S, ZHAO H, et al. Shock enhancement of cellular structures under impact loading: part I experiments [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652–2671. doi: 10.1016/j.jmps.2007.04.005 [6] BROTHERS A H, DUNAND D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Materials Science and Engineering A, 2008, 489(1/2): 439–443. [7] HANGAI Y, TAKAHASHI K, YAMAGUCHI R, et al. Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography [J]. Materials Science and Engineering A, 2012, 556: 678–684. doi: 10.1016/j.msea.2012.07.047 [8] BRUCK H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. International Journal of Solids and Structures, 2000, 37(44): 6383–6395. doi: 10.1016/S0020-7683(99)00236-X [9] KIERNAN S, CUI L, GILCHRIST M D. Propagation of a stress wave through a virtual functionally graded foam [J]. International Journal of Non-Linear Mechanics, 2009, 44(5): 456–468. doi: 10.1016/j.ijnonlinmec.2009.02.006 [10] CUI L, KIRENAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A, 2009, 507(1/2): 215–225. [11] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168.WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168. [12] LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. doi: 10.1016/j.tws.2016.12.016 [13] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570. [14] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminum foams. Part II–'shock' theory and comparison with experimental data and numerical modelsls [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206–2230. doi: 10.1016/j.jmps.2005.05.003 [15] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. doi: 10.1063/2.1303101 [16] SHEN C J, YU T X, LU G. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. doi: 10.1016/j.ijsolstr.2012.09.021 [17] SHEN C J, LU G, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. doi: 10.1016/j.ijimpeng.2014.02.015 [18] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. doi: 10.1016/j.jmps.2014.07.013 [19] 蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析 [J]. 爆炸与冲击, 2017, 37(3): 396–404.CAI Z Y, DING Y Y, WANG S L, et al. Anti-blast analysis of graded cellular sacrificial cladding [J]. Explosion and Shock Waves, 2017, 37(3): 396–404. [20] 常白雪, 郑志军, 赵凯, 等. 梯度多胞材料耐撞性设计的简化模型和渐近解 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 233–241.CHANG B X, ZHENG Z J, ZHAO K, et al. A simplified model and its asymptotic solution for the crashworthiness design of graded cellular material [J]. Scientia Sinica: Physica Mechanica & Astronomica, 2018, 48(9): 233–241. [21] 常白雪, 郑志军, 赵凯, 等. 具有恒定冲击载荷的梯度泡沫金属材料设计 [J]. 爆炸与冲击, 2019, 39(4): 3–11.CHANG B X, ZHENG Z J, ZHAO K, et al. Design of gradient foam metal materials with a constant impact load [J]. Explosion and Shock Waves, 2019, 39(4): 3–11. [22] DING Y Y, WANG S L, ZHAO K, et al. Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model [J]. International Journal of Applied Mechanics, 2016, 8(4): 1650057. doi: 10.1142/S1758825116500575 [23] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516. [24] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering A, 2013, 561: 352–361. doi: 10.1016/j.msea.2012.10.026 [25] ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2015, 85(1): 176–187. [26] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.WANG L L. Foundation of stress wave [M]. Beijing: National Defence Industry Press, 2005. [27] ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 857–870. doi: 10.1016/S0022-5096(00)00046-6 [28] 张建军. 冲击载荷下梯度多孔金属力学行为研究 [D]. 太原: 太原理工大学, 2016.ZHANG J J. Investigations of mechanical behaviors of graded cellulartals subjected to impact loading [D]. Taiyuan: Taiyuan University of Technology, 2016. [29] YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering A, 2017, 680(1): 411–420. [30] 王根伟, 王江龙. 负梯度闭孔泡沫金属的力学性能分析 [J]. 固体力学学报, 2017(1): 88–95.WANG G W, WANG J L. Mechanical properties of closed-cell metal foam with negative density gradient under impact load [J]. Chinese Journal of Solid Mechanics, 2017(1): 88–95. [31] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. doi: 10.1177/0021955X06063519 [32] WANG J L, LI X, WANG G W. Deformation modes of the graded closed-cell foam under impact loading [C]//2016 International Conference on Applied Mechanics, Electronics and Mechatronics Engineering. Beijing: DEStech Publications, 2016. [33] ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. doi: 10.1016/j.ijimpeng.2011.09.009