Loading [MathJax]/jax/output/SVG/jax.js

负梯度泡沫金属中的局部密实化现象

刘冕 王根伟 宋辉 王彬

王志鹏, 韩志军, 王龙飞. 基于Galerkin法研究应力波作用下复合材料板的动力学失稳[J]. 高压物理学报, 2021, 35(5): 054204. doi: 10.11858/gywlxb.20210705
引用本文: 刘冕, 王根伟, 宋辉, 王彬. 负梯度泡沫金属中的局部密实化现象[J]. 高压物理学报, 2020, 34(4): 044204. doi: 10.11858/gywlxb.20190866
WANG Zhipeng, HAN Zhijun, WANG Longfei. Dynamic Instability of Composite Plate under Stress Wave Based on Galerkin Method[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 054204. doi: 10.11858/gywlxb.20210705
Citation: LIU Mian, WANG Genwei, SONG Hui, WANG Bin. Phenomenon of Local Densification in Negative Graded Metal Foam[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044204. doi: 10.11858/gywlxb.20190866

负梯度泡沫金属中的局部密实化现象

doi: 10.11858/gywlxb.20190866
基金项目: 国家自然科学基金(11872265)
详细信息
    作者简介:

    刘 冕(1996-),女,硕士研究生,主要从事梯度泡沫金属的力学性能研究. E-mail: 516753451@qq.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事材料和结构的冲击动力学研究. E-mail: gwang@tyut.edu.cn

  • 中图分类号: O347.3

Phenomenon of Local Densification in Negative Graded Metal Foam

  • 摘要: 基于一维非线性的刚性-塑性硬化模型,研究了在恒速冲击作用下负梯度泡沫的冲击波控制方程和传播特性。采用LS-DYNA有限元软件对三维随机Voronoi技术生成的梯度泡沫金属模型进行数值模拟,验证了理论预测,并定义了冲击波模型下梯度泡沫材料的局部密实化应变与第二临界速度。通过对冲击速度、密度梯度、相对密度参数的影响研究发现:冲击波模型的理论解与有限元模型的数值解吻合较好,基于R-PH模型的冲击波理论能较好地预测负梯度泡沫金属的力学性能;局部密实化应变在不同冲击速度下存在3个增长阶段;密度梯度绝对值和相对密度越大,局部密实化应变越小,第二临界速度越大。最后讨论了负梯度泡沫中局部密实化现象对支撑端应力的影响。

     

  • 复合材料板具有较高的强度质量比、良好的耐腐蚀性和优异的可设计性,被广泛应用于航空航天和工业制造等领域[1]。在实际使用中复合材料板经常受到不同形式的冲击荷载,从而产生振动和屈曲问题,因此冲击载荷作用下复合材料板的动力稳定性问题备受关注。

    近年来关于复合材料板的研究越来越多,尤其是冲击荷载作用下复合材料板的动力稳定性问题研究[2],对工程部件结构设计和使用具有重要的意义。Sun等[3]研究了在加热环境中应力波对功能梯度圆柱壳轴向冲击屈曲的影响;毛柳伟等[4]对弹性直杆在应力波作用下的动力分叉屈曲进行了分析与探讨,提出了求解应力波作用下直杆动力屈曲的数值方法;Lepik[5]讨论了在应力波影响下轴向压缩的弹塑性梁的屈曲;Zhang等[6]分析了不确定初始几何缺陷对薄板屈曲的影响;Abdelaziz等[7]利用双曲线剪切变形理论,分析了在各种边界条件下复合材料板的弯曲变形和屈曲;Kouchakzadeh等[8]采用线性和旋转弹簧的均匀分布来模拟边界条件,对矩形层压复合板的屈曲进行了分析;Czapski等[9]通过数值和实验方法,研究了残余应力对压缩至破坏期间薄壁层压板屈曲性能的影响。

    在实际工程中,复合材料板多应用于振动环境,其在动力响应下的动态特性和振动分析是必不可少的,因而对该类材料的振动屈曲研究至关重要。Kuo[10]研究了两种非均匀分布纤维复合材料板的振动屈曲问题,Villarreal等[11]对典型正交异性板的本征频率和振动屈曲进行了理论分析,Eftekhari等[12]提出了通过组合应用有限元方法和微分正交方法求解矩形板的振动屈曲问题,Rehman等[13]探讨了壳体结构的缺陷和损坏对结构振动屈曲的影响,Sayyad等[14]将三角剪切变形理论应用于复合板的变形和振动屈曲研究。

    关于复合材料板的振动屈曲问题已开展了较多的研究,但大多未考虑应力波效应对振动屈曲的影响,而动力屈曲一般与应力波相联系且具有局部发生的特点,研究含初始缺陷的复合材料板能更好地揭示实际工程中复合材料板在不同工况下发生动力屈曲的机理。基于此,本研究利用Kirchhoff薄板理论和Hamilton原理,考虑应力波效应,建立含初始几何缺陷的四边简支复合材料板的振动控制方程,得到板的屈曲临界荷载表达式,在此基础上通过数值计算讨论初始几何缺陷、振型函数初相位、铺层角度、屈曲模态阶数和铺层层数对复合材料板振动屈曲临界荷载的影响,为工程实际提供理论依据。

    复合材料板在x = La处为固定边界条件,其余3边为简支边界条件,在z = 0的中性面上受x方向的面内阶跃荷载N作用,如图1所示。板在z方向上含初始几何缺陷w1,且xyz方向的位移分别为uvw。复合材料板的长度、宽度和厚度分别为LaLbh,由n层单层板组成,θ为单层板的铺层角度,即纤维材料铺设方向与x方向的夹角(见图1)。

    图  1  复合材料板结构示意图
    Figure  1.  Schematic diagram of composite plate structure

    根据Kirchhoff薄板理论及经典弹性理论,复合材料板的位移与应变、弹性曲面的曲率和扭率的表达式为

    {w=w1+w0u=u0z(ww1)xv=v0z(ww1)y (1)
    {ε0x=u0xε0y=v0yγ0xy=u0y+v0x (2)
    {κx=2(ww1)x2κy=2(ww1)y2κxy=22(ww1)xy (3)
    {εx=ε0x+zκxεy=ε0y+zκyγxy=γ0xy+zκxy (4)

    式中:u0v0w0分别为复合材料板在xyz方向上的中面位移,ε0xε0yγ0xy分别为复合材料板中面应变分量,κxκyκxy为中面的曲率和扭率,εxεyγxy为复合材料板任意一点的应变。

    板的内力(NxNyNxy)与内力矩(MxMyMxy)之间的关系为

    [NxNyNxyMxMyMxy]=[A11A12A16B11B12B16A12A22A26B12B22B26A16A26A66B16B26B66B11B12B16D11D12D16B12B22B26D12D22D26B16B26B66D16D26D66][ε0xε0yγ0xyκxκyκxy] (5)

    式中:AijBijDij(i,j=1,2,6)分别表示板的拉伸刚度、耦合刚度和弯曲刚度系数[15],表达式如下

    {Aij=nk=1¯Qkij(hkhk1)Bij=12nk=1¯Qkij(h2kh2k1)Dij=13nk=1¯Qkij(h3kh3k1) (6)

    式中:¯Qkij为复合材料板第k层的偏轴刚度系数

    ¯Q=P1Q(P1)T (7)

    式中:P为坐标转换矩阵,Q为刚度矩阵。

    P=[cos2θsin2θ2sinθcosθsin2θcos2θ2sinθcosθsinθcosθsinθcosθcos2θsin2θ] (8)
    Q=[Q11Q120Q12Q22000Q66] (9)

    考虑材料为正交各向异性材料,设E1E2G12μ12μ21分别为板材料xy方向的拉压弹性模量、剪切弹性模量、主泊松比和副泊松比,则有

    Q11=E11μ12μ21,Q22=E21μ12μ21,Q12=μ12E21μ12μ21=μ21E11μ12μ21,Q66=G12 (10)

    复合材料板在左端受面内冲击荷载N作用(见图1)时,应力波沿x方向在板内传播,其应力变化如图2所示。

    图  2  应力波传播示意图
    Figure  2.  Schematic diagram of stress wave propagation

    当应力波传播至波阵面位置Lcr(临界长度)时,板发生振动屈曲,板的内力Nt和应力波波速c分别表示为

    Nt={N0xLcr0x>Lcr,c=A11ρh (11)

    板发生振动屈曲时的变形能可以表示为

    U=12Lcr0Lb0(Nxε0x+Nyε0y+Nxyγ0xy+Mxκx+Myκy+Mxyκxy)dxdy=12Lcr0Lb0[Nxu0x+Nyv0y+Nxy(u0x+v0y)+Mx(2w0x2)+My(2w0y2)+Mxy(22w0xy)]dxdy (12)

    发生振动屈曲时的动能(考虑转动惯量)可以表示为

    T=12h/2h/2Lcr0Lb0ρ(k)[(ut)2+(vt)2+(w0t)2]dxdydz=12Lcr0Lb0[I0(u0t)2+I0(v0t)2+I0(w0t)22I1u0t2w0xt2I1v0t2w0yt+I2(2w0xt)2+I2(2w0yt)2]dxdy (13)

    式中:(I0,I1,I2)=Nkk=1hkhk1ρ(k)(1,z,z2)dzρ(k)为第k层材料的密度。

    板发生振动屈曲时的外力功可以表示为

    W=12Lcr0Lb0Nt(wx)2dxdy (14)

    考虑Hamilton变分原理,即

    δt2t1(TU+W)dt=0 (15)

    将式(12)~式(14)代入式(15)并进行变分计算,可得

    Nxx+NxyxI02u0t2+I13w0xt2=0 (16)
    Nyy+NxyyI02v0t2+I13w0yt2=0 (17)
    2Mxx2+2Myy222MxyxyNt(2w0x2+2w1x2)=I02w0t2+I1(3u0xt2+3v0xt2)I2(4w0x2t2+4w0y2t2) (18)

    对于正交各向异性正规对称正交铺设的复合材料板,其刚度矩阵满足[16]

    D16=D26=0,A16=A26=0,Bij=0 (19)

    根据 Kirchhoff 薄板理论及经典弹性理论,薄板中面在变形过程中没有伸长变形,将板的本构关系代入式(16)~式(18)中,略去含u0v0的项,得到复合材料板在面向阶跃荷载激励下的控制方程

    D114w0x4+(2D12+4D66)4w0x2y2+D224w0y4+Nt(2w0x2+2w1x2)I02w0t2+I2(4w0x2t2+4w0y2t2)=0 (20)

    设三边简支和应力波传播到Lcrw0(Lcr,y,t)=w0(Lcr,y,t)=0)时的振型函数[17]

    w0(x,y,t)=Rij[siniπxLcr+ii+1sin(i+1)πxLcr]sinjπyLbsin(ωt+φ) (21)

    由屈曲模态确定的缺陷分布形式是板结构最有可能发生的屈曲形式,能够很好地确定结构的缺陷敏感性[18]。对于复合材料板在制造过程中出现的初始几何缺陷,引入屈曲模态的ε倍变形作为初始几何缺陷[19],可以表示为

    w1(x,y)=εRij[siniπxLcr+ii+1sin(i+1)πxLcr]sinjπyLb (22)

    式中:ij为屈曲模态阶数,i,j=1,2,3,Rij为板的第(i, j)阶模态幅值;ε表示初始几何缺陷系数。

    根据式(21)和式(22),利用棣莫弗公式对控制方程式(20)中的各项进行求导并化简,得到

    D11(πLcr)4[i4+(i+1)4]sin(ωt+φ)+(2D12+4D66)(πLcr)2[i2+(i+1)2](jπLb)2sin(ωt+φ)+2D22(jπLb)4sin(ωt+φ)Nt(πLcr)2[i2+(i+1)2][sin(ωt+φ)+ε]+2I0ω2sin(ωt+φ)+I2ω2{(πLcr)2[i2+(i+1)2]+2(jπLb)2}sin(ωt+φ)=0 (23)

    根据式(23)可以得到N的表达式

    N={D11(πLcr)4[i4+(i+1)4]+(2D12+4D66)(πLcr)2[i2+(i+1)2](jπLb)2+2D22(jπLb)4+2I0ω2+I2ω2{(πLcr)2[i2+(i+1)2]+2(jπLb)2}}sin(ωt+φ)(πLcr)2[i2+(i+1)2][sin(ωt+φ)+ε] (24)

    板发生屈曲时,临界条件为ω=0[20],代入式(24)可得振动屈曲临界荷载为

    Ncr=D11(πLcr)2[i4+(i+1)4]sinφ[i2+(i+1)2](sinφ+ε)+(2D12+4D66)(jπLb)2sinφ(sinφ+ε)+2D22(j2πL2b)2L2crsinφ[i2+(i+1)2](sinφ+ε) (25)

    利用MATLAB数值分析应力波未反射时初始几何缺陷、初相位、铺层角度、屈曲模态阶数、铺设厚度以及铺层层数对复合材料板振动屈曲临界荷载的影响,使用的材料参数见表1[21]

    表  1  复合材料板参数[21]
    Table  1.  Material parameters of composite plate[21]
    E1/GPaE2/GPaG12/GPaμ12La/mLb/m
    140.08.65.00.350.600.50
    下载: 导出CSV 
    | 显示表格

    图3显示了复合材料板的模态阶数i为1、2、3,j为1时的屈曲模态。当板的x方向模态增大时,x方向的屈曲模态第一峰值增大且波数增加,而y方向的屈曲模态呈正对称分布。模态阶数的增加使板振动的屈曲模态变得更复杂。

    图  3  x方向模态取值增大时板的屈曲模态
    Figure  3.  Buckling mode of composite plate with increasing mode value in x direction

    设置7组算例,分别以初始几何缺陷、初相位、铺层角度、xy两个方向屈曲模态阶数、铺层层数及铺设厚度为变量进行算例分析,研究以上因素对板振动屈曲临界荷载的影响,算例参数见表2

    表  2  算例分析参数表
    Table  2.  Example analysis parameter table
    GroupInitial defect
    coefficient
    Order of modeLaying angle/(°)Initial phaseNumber of
    layers laid
    Thickness
    of the plate/m
    x directiony direction
    AVariablei = 1j = 1[0, 0, 0, 0, 0]π/250.01
    B0.1Variablej = 1[0, 0, 0, 0, 0]π/250.01
    C0.1i =1Variable[0, 0, 0, 0, 0]π/250.01
    D0.1i =1j = 1Variableπ/250.01
    E0.1i =1j = 1[0, 0, 0, 0, 0]Variable50.01
    F0.1i =1j = 1[0, 0, 0, 0, 0]π/2Variable0.01
    G0.1i =1j = 1[0, 0, 0, 0, 0]π/25Variable
    下载: 导出CSV 
    | 显示表格

    将A组数据代入式(25)中,可以得到不同初始缺陷系数对复合材料板振动屈曲的影响,如图4所示。由Lcr-Ncr曲线可知:在应力波传播过程中,Ncr呈指数下降,分为敏感区和非敏感区。应力波在Lcr < 0.4 m区域传播时,Ncr的变化较陡峭,该区域为敏感区;应力波在Lcr > 0.4 m区域传播时,Ncr的变化趋于平缓,该区域为非敏感区,因此敏感分界点为0.4 m。当选取的初始缺陷系数增大时,临界荷载Ncr也随之增大。在敏感区,初始缺陷系数对临界荷载Ncr的影响较大,且随应力波传播呈减小趋势。此外,初始缺陷系数对非敏感区的影响较小。图4表明,初始几何缺陷系数越大,板越容易发生屈曲。

    图  4  不同初始缺陷系数条件下NcrLcr的关系曲线
    Figure  4.  Relationship between Ncr and Lcr under different initial defect coefficients

    将B组数据代入式(25)中,可以得到不同x方向模态阶数对复合材料板振动屈曲的影响,如图5所示。由Lcr-Ncr曲线可知:当选取的x方向模态阶数增大时,临界荷载Ncr随之明显增大。在敏感区,x方向模态阶数对临界荷载Ncr的影响很大,并随应力波的传播不断减小,到达非敏感区之后影响较小并趋于稳定。图5表明,x方向模态阶数的增加会显著增大板的屈曲临界荷载。

    图  5  x方向模态阶数不同时NcrLcr的关系曲线
    Figure  5.  Relationship between Ncr and Lcr with different order of modes in x direction

    将C组数据代入式(25)中,可以得到不同的y方向模态阶数对复合材料板振动屈曲的影响,如图6所示。由Lcr-Ncr曲线可知:当选取的y方向模态阶数增大时,临界荷载Ncr也随之变大。在应力波传播过程中,在敏感区y方向模态阶数对临界载荷基本没有影响,而在非敏感区有极小的影响。图6表明,y方向模态阶数的变化对板屈曲临界荷载基本没有影响。

    图  6  y方向模态阶数不同时NcrLcr的关系曲线
    Figure  6.  Relationship between Ncr and Lcr with different order of modes in y direction

    将D组数据代入式(25)中,得到不同铺层角度对复合材料板振动屈曲的影响,如图7所示。由Lcr-Ncr曲线可知:在敏感区,不同的铺设角度对临界荷载Ncr的影响较大,且随应力波的传播不断减小,到达非敏感区后趋于稳定。图7表明,铺层角度小的单层板的层数越多,板的临界屈曲荷载越大,说明复合材料板的铺设角度直接影响板的屈曲临界荷载。

    图  7  不同铺层角度条件下NcrLcr的关系曲线
    Figure  7.  Relationship between Ncr and Lcr under different laying angles

    将E组数据代入式(25)中,得到不同初相位对复合材料板振动屈曲的影响,如图8所示。由Lcr-Ncr曲线可知:振型函数的初相位越大,对应的临界荷载越大。在敏感区,振型函数的初相位对临界荷载Ncr的影响较小,且随应力波的传播不断减小;到达非敏感区之后,影响趋于平缓。图8表明,振型函数的初相位越大,板的屈曲临界荷载越大。

    图  8  不同初相位条件下NcrLcr的关系曲线
    Figure  8.  Relationship between Ncr and Lcr under the condition of initial phase of different mode functions

    将F组数据代入式(25)中,得到不同铺层层数对复合材料板振动屈曲的影响,如图9所示。由Lcr-Ncr曲线可知:当按照不同层数铺设时,敏感区的临界荷载Ncr的变化较大,且随应力波的传播不断减小;到达非敏感区之后变化较小并趋于平缓。图9表明,对于厚度固定且对称铺设的板,当铺设层数达到7时,其屈曲荷载随层数增加趋于稳定。

    图  9  不同铺层层数下NcrLcr的关系曲线
    Figure  9.  Relationship between Ncr and Lcr under different laying modes

    将G组数据代入式(25)中,得到不同铺设厚度对复合材料板振动屈曲的影响,如图10所示。由Lcr-Ncr曲线可知:板的铺设厚度越大,对应的临界荷载越大。在敏感区,不同的板厚对临界荷载Ncr的影响很大,且随应力波的传播不断减小,到达非敏感区后趋于稳定。图10表明,复合材料板的铺设厚度将直接决定板的屈曲临界荷载。

    图  10  不同铺设厚度下NcrLcr的关系曲线
    Figure  10.  Relationship between Ncr and Lcr under different thicknesses

    基于Kirchhoff薄板理论和Hamilton变分原理,建立了具有初始几何缺陷的四边简支复合材料板的振动控制方程。采用伽辽金法,选取符合边界条件的振型函数求解控制方程,得到屈曲临界载荷表达式。数值计算结果表明:应力波在未发生反射前的传播过程中,复合材料板的振动屈曲临界载荷随着临界长度的增大、铺设厚度的减小、初始几何缺陷系数的增大、振型函数初相位的减小而减小;复合材料板的各层铺层角度与荷载作用方向的夹角越小,屈曲临界载荷越大,当对称铺设层数达7层时,临界荷载趋于稳定。研究结果可为工程中复合材料板的结构设计与应用提供一定的参考。

  • 图  双波模型

    Figure  1.  Double shock model

    图  有限元模型

    Figure  2.  Finite element model

    图  不同相对密度的准静态应力-应变曲线和参数拟合结果

    Figure  3.  Quasi-static stress-strain curve and parameter fitting results with different relative densities

    图  不同冲击速度下的vu曲线

    Figure  4.  Curves of vu at different impact velocities

    图  不同冲击速度下波阵面的位置曲线

    Figure  5.  Location of wave front at different impact velocities

    图  负梯度泡沫的名义应力-应变曲线与能量吸收效率曲线

    Figure  6.  Nominal stress-strain curve and energy absorption efficiency curve of negative graded foam

    图  负梯度泡沫的应变云图

    Figure  7.  Strain nephograms of negative graded foam

    图  两端应力的FE结果和理论预测对比

    Figure  8.  Comparison of FE results and theoretical predictions at both sides stress

    图  密度梯度与相对密度对局部密实化应变的影响

    Figure  9.  Influence of density gradient and relative density on local densification strain

    图  10  不同密度梯度和相对密度下的变形模态

    Figure  10.  Deformation modes under different density gradients and relative densities

    图  11  不同冲击速度下支撑端的名义应力-应变曲线

    Figure  11.  Nominal stress-strain curve of the support end under different impact velocities

    图  12  不同冲击速度下冲击端与支撑端的名义应力-应变曲线

    Figure  12.  Nominal stress-strain curves of the impact end and the support end under different impact velocities

    表  1  本构模型参数

    Table  1.   Constitutive model parameters

    ρs/(kg·m–3)E/GPaνσys/MPaEt/GPa
    2 700690.3760.69
    下载: 导出CSV
  • [1] ASHBY M F, EVANS A, FLECK N A, et al. Metal foams: a design guide [M]. UK: Heinemann Publishers, 2000.
    [2] GIBSON L J. Mechanical behavior of metallic foams [J]. Annual Review of Materials Science, 2000, 30: 191–227. doi: 10.1146/annurev.matsci.30.1.191
    [3] ZHENG Z J, YU J L, LI J R. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/2/3/4): 650–664.
    [4] LIU Y D, YU J L, ZHENG Z J, et al. A numerical study on the rate sensitivity of cellular metals [J]. International Journal of Solids and Structures, 2009, 46(22/23): 3988–3998.
    [5] ELNASRI I, PATTOFATTO S, ZHAO H, et al. Shock enhancement of cellular structures under impact loading: part I experiments [J]. Journal of the Mechanics and Physics of Solids, 2007, 55(12): 2652–2671. doi: 10.1016/j.jmps.2007.04.005
    [6] BROTHERS A H, DUNAND D C. Mechanical properties of a density-graded replicated aluminum foam [J]. Materials Science and Engineering A, 2008, 489(1/2): 439–443.
    [7] HANGAI Y, TAKAHASHI K, YAMAGUCHI R, et al. Nondestructive observation of pore structure deformation behavior of functionally graded aluminum foam by X-ray computed tomography [J]. Materials Science and Engineering A, 2012, 556: 678–684. doi: 10.1016/j.msea.2012.07.047
    [8] BRUCK H A. A one-dimensional model for designing functionally graded materials to manage stress waves [J]. International Journal of Solids and Structures, 2000, 37(44): 6383–6395. doi: 10.1016/S0020-7683(99)00236-X
    [9] KIERNAN S, CUI L, GILCHRIST M D. Propagation of a stress wave through a virtual functionally graded foam [J]. International Journal of Non-Linear Mechanics, 2009, 44(5): 456–468. doi: 10.1016/j.ijnonlinmec.2009.02.006
    [10] CUI L, KIRENAN S, GILCHRIST M D. Designing the energy absorption capacity of functionally graded foam materials [J]. Materials Science and Engineering A, 2009, 507(1/2): 215–225.
    [11] 吴鹤翔, 刘颖. 梯度变化对密度梯度蜂窝材料力学性能的影响 [J]. 爆炸与冲击, 2013, 33(2): 163–168.

    WU H X, LIU Y. Influences of density gradient variation on mechanical performances of density-graded honeycomb materials [J]. Explosion and Shock Waves, 2013, 33(2): 163–168.
    [12] LIANG M Z, ZHANG G D, LU F Y, et al. Blast resistance and design of sandwich cylinder with graded foam cores based on the Voronoi algorithm [J]. Thin-Walled Structures, 2017, 112: 98–106. doi: 10.1016/j.tws.2016.12.016
    [13] REID S R, PENG C. Dynamic uniaxial crushing of wood [J]. International Journal of Impact Engineering, 1997, 19(5/6): 531–570.
    [14] TAN P J, REID S R, HARRIGAN J J, et al. Dynamic compressive strength properties of aluminum foams. Part II–'shock' theory and comparison with experimental data and numerical modelsls [J]. Journal of the Mechanics and Physics of Solids, 2005, 53(10): 2206–2230. doi: 10.1016/j.jmps.2005.05.003
    [15] WANG X K, ZHENG Z J, YU J L. Crashworthiness design of density-graded cellular metals [J]. Theoretical and Applied Mechanics Letters, 2013, 3(3): 031001. doi: 10.1063/2.1303101
    [16] SHEN C J, YU T X, LU G. Double shock mode in graded cellular rod under impact [J]. International Journal of Solids and Structures, 2013, 50(1): 217–233. doi: 10.1016/j.ijsolstr.2012.09.021
    [17] SHEN C J, LU G, YU T X. Investigation into the behavior of a graded cellular rod under impact [J]. International Journal of Impact Engineering, 2014, 74: 92–106. doi: 10.1016/j.ijimpeng.2014.02.015
    [18] ZHENG Z J, WANG C F, YU J L, et al. Dynamic stress-strain states for metal foams using a 3D cellular model [J]. Journal of the Mechanics and Physics of Solids, 2014, 72: 93–114. doi: 10.1016/j.jmps.2014.07.013
    [19] 蔡正宇, 丁圆圆, 王士龙, 等. 梯度多胞牺牲层的抗爆炸分析 [J]. 爆炸与冲击, 2017, 37(3): 396–404.

    CAI Z Y, DING Y Y, WANG S L, et al. Anti-blast analysis of graded cellular sacrificial cladding [J]. Explosion and Shock Waves, 2017, 37(3): 396–404.
    [20] 常白雪, 郑志军, 赵凯, 等. 梯度多胞材料耐撞性设计的简化模型和渐近解 [J]. 中国科学: 物理学 力学 天文学, 2018, 48(9): 233–241.

    CHANG B X, ZHENG Z J, ZHAO K, et al. A simplified model and its asymptotic solution for the crashworthiness design of graded cellular material [J]. Scientia Sinica: Physica Mechanica & Astronomica, 2018, 48(9): 233–241.
    [21] 常白雪, 郑志军, 赵凯, 等. 具有恒定冲击载荷的梯度泡沫金属材料设计 [J]. 爆炸与冲击, 2019, 39(4): 3–11.

    CHANG B X, ZHENG Z J, ZHAO K, et al. Design of gradient foam metal materials with a constant impact load [J]. Explosion and Shock Waves, 2019, 39(4): 3–11.
    [22] DING Y Y, WANG S L, ZHAO K, et al. Blast alleviation of cellular sacrificial cladding: a nonlinear plastic shock model [J]. International Journal of Applied Mechanics, 2016, 8(4): 1650057. doi: 10.1142/S1758825116500575
    [23] AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids and Structures, 2011, 48(3/4): 506–516.
    [24] FAN J H, ZHANG J J, WANG Z H, et al. Dynamic crushing behavior of random and functionally graded metal hollow sphere foams [J]. Materials Science and Engineering A, 2013, 561: 352–361. doi: 10.1016/j.msea.2012.10.026
    [25] ZHANG J J, WANG Z H, ZHAO L M. Dynamic response of functionally graded cellular materials based on the Voronoi model [J]. Composites Part B: Engineering, 2015, 85(1): 176–187.
    [26] 王礼立. 应力波基础 [M]. 北京: 国防工业出版社, 2005.

    WANG L L. Foundation of stress wave [M]. Beijing: National Defence Industry Press, 2005.
    [27] ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs [J]. Journal of the Mechanics and Physics of Solids, 2001, 49(4): 857–870. doi: 10.1016/S0022-5096(00)00046-6
    [28] 张建军. 冲击载荷下梯度多孔金属力学行为研究 [D]. 太原: 太原理工大学, 2016.

    ZHANG J J. Investigations of mechanical behaviors of graded cellulartals subjected to impact loading [D]. Taiyuan: Taiyuan University of Technology, 2016.
    [29] YANG J, WANG S L, DING Y Y, et al. Crashworthiness of graded cellular materials: a design strategy based on a nonlinear plastic shock model [J]. Materials Science and Engineering A, 2017, 680(1): 411–420.
    [30] 王根伟, 王江龙. 负梯度闭孔泡沫金属的力学性能分析 [J]. 固体力学学报, 2017(1): 88–95.

    WANG G W, WANG J L. Mechanical properties of closed-cell metal foam with negative density gradient under impact load [J]. Chinese Journal of Solid Mechanics, 2017(1): 88–95.
    [31] LI Q M, MAGKIRIADIS I, HARRIGAN J J. Compressive strain at the onset of densification of cellular solids [J]. Journal of Cellular Plastics, 2006, 42(5): 371–392. doi: 10.1177/0021955X06063519
    [32] WANG J L, LI X, WANG G W. Deformation modes of the graded closed-cell foam under impact loading [C]//2016 International Conference on Applied Mechanics, Electronics and Mechatronics Engineering. Beijing: DEStech Publications, 2016.
    [33] ZHENG Z J, LIU Y D, YU J L, et al. Dynamic crushing of cellular materials: continuum-based wave models for the transitional and shock modes [J]. International Journal of Impact Engineering, 2012, 42: 66–79. doi: 10.1016/j.ijimpeng.2011.09.009
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  6678
  • HTML全文浏览量:  3335
  • PDF下载量:  30
出版历程
  • 收稿日期:  2019-12-12
  • 修回日期:  2019-12-28

目录

/

返回文章
返回