铁的自旋转变对菱镁矿热力学性质的影响

马超杰 吴潇 马阳阳 何开华 姬广富

马超杰, 吴潇, 马阳阳, 何开华, 姬广富. 铁的自旋转变对菱镁矿热力学性质的影响[J]. 高压物理学报, 2020, 34(2): 022201. doi: 10.11858/gywlxb.20190862
引用本文: 马超杰, 吴潇, 马阳阳, 何开华, 姬广富. 铁的自旋转变对菱镁矿热力学性质的影响[J]. 高压物理学报, 2020, 34(2): 022201. doi: 10.11858/gywlxb.20190862
MA Chaojie, WU Xiao, MA Yangyang, HE Kaihua, JI Guangfu. Effect of Spin Transition of Iron on Thermodynamic Properties of Magnesiosiderite[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022201. doi: 10.11858/gywlxb.20190862
Citation: MA Chaojie, WU Xiao, MA Yangyang, HE Kaihua, JI Guangfu. Effect of Spin Transition of Iron on Thermodynamic Properties of Magnesiosiderite[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 022201. doi: 10.11858/gywlxb.20190862

铁的自旋转变对菱镁矿热力学性质的影响

doi: 10.11858/gywlxb.20190862
基金项目: 国家自然科学基金(41474067)
详细信息
    作者简介:

    马超杰(1994-),男,硕士研究生,主要从事高温高压材料的模拟计算研究.E-mail: machaojie1994@126.com

    通讯作者:

    何开华(1978-),男,副教授,主要从事纳米材料和矿物材料的模拟计算研究.E-mail: khhe@cug.edu.cn

  • 中图分类号: O521.2

Effect of Spin Transition of Iron on Thermodynamic Properties of Magnesiosiderite

  • 摘要: 含铁菱镁矿(Mg,Fe)CO3是碳进入地球深部的主要载体之一,铁的进入会引起矿物物理性质的变化。采用第一性原理计算方法,研究了菱镁矿含铁及铁的自旋转变对菱镁矿热力学性质的影响。含铁菱镁矿的低自旋态体积比不含铁菱镁矿小;高自旋态在低温端的体积比不含铁菱镁矿略微增大,在高温端却减小;在所研究的温压范围内,低自旋态的体积始终比高自旋态的体积小。含铁菱镁矿高自旋态的热膨胀系数减小,而自旋转变会导致热膨胀系数增加。考虑高低两种自旋态共存时的热力学性质时,计算结果表明:自旋态共存时的热膨胀系数、速度在自旋共存区间内分别呈现异常增大峰和异常减小峰,并且这些异常变化峰随着温度的升高向高压方向移动。

     

  • 图  (Mg0.5Fe0.5)CO3的LS态与HS态的焓差ΔHHHSHLS)随压力的变化

    Figure  1.  Pressure dependence of the enthalpy difference (ΔH) between LS state and HS state (HHSHLS) for (Mg0.5Fe0.5)CO3

    图  (Mg0.5Fe0.5)CO3的HS态与LS态的体积V(a)和热膨胀系数α(b)随温度的变化关系

    Figure  2.  Temperature dependence of the (a) volume V, (b) thermal expansion coefficient α for both the HS and LS state of (Mg0.5Fe0.5)CO3

    图  MgCO3与(Mg0.5Fe0.5)CO3的定容比热容${C_{V,\rm{m}}}$(a)、格临爱森常数γ(b)、体变模量KT(c)与温度的关系

    Figure  3.  Temperature dependence of the (a) specific heat capacity of constant volume ${C_{V,\rm{m}}}$, (b) Grüneisen parameter γ, (c) bulk modulus KT of MgCO3 and (Mg0.5Fe0.5)CO3

    图  n随温度和压力的变化关系

    Figure  4.  Ratio n as the function of pressure at different temperature

    图  ${\left. {\dfrac{{\partial n}}{{\partial T}}} \right|_p}$随温度的变化关系(a) 及${\left. {\dfrac{{\partial n}}{{\partial p}}} \right|_T}$随压力的变化关系(b)

    Figure  5.  ${\left. {\dfrac{{\partial n}}{{\partial T}}} \right|_p}$as the function of temperature (a) and ${\left. {\dfrac{{\partial n}}{{\partial p}}} \right|_T}$as the function of pressure (b)

    图  MS态的体积V(a)、热膨胀系数α(b)、速度v(c)随压力的变化关系

    Figure  6.  Volume V (a), thermal expansion coefficient α (b), velocity v (c) of MS state as the function of pressure

  • [1] MANNING C E, SHOCK E L, SVERJENSKY D A. The chemistry of carbon in aqueous fluids at crustal and upper-mantle conditions: experimental and theoretical constraints [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1): 109–148. doi: 10.2138/rmg.2013.75.5
    [2] DASGUPTA R, HIRSCHMANN M M. Melting in the Earth’s deep upper mantle caused by carbon dioxide [J]. Nature, 2006, 440(7084): 659–662. doi: 10.1038/nature04612
    [3] ROHRBACH A, SCHMIDT M W. Redox freezing and melting in the Earth’s deep mantle resulting from carbon-iron redox coupling [J]. Nature, 2011, 472(7342): 209–212. doi: 10.1038/nature09899
    [4] WALTER M J, KOHN S C, ARAUJO D, et al. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions [J]. Science, 2011, 334(6052): 54–57. doi: 10.1126/science.1209300
    [5] LAVINA B, DERA P, DOWNS R T, et al. Siderite at lower mantle conditions and the effects of the pressure-induced spin-pairing transition [J]. Geophysical Research Letters, 2009, 36(23): 23306. doi: 10.1029/2009GL039652
    [6] LAVINA B, DERA P, DOWNS R T, et al. Effect of dilution on the spin pairing transition in rhombohedral carbonates [J]. High Pressure Research, 2010, 30(2): 224–229. doi: 10.1080/08957959.2010.485391
    [7] LAVINA B, DERA P, DOWNS R T, et al. Structure of siderite FeCO3 to 56 GPa and hysteresis of its spin-pairing transition [J]. Physical Review B, 2010, 82(6): 064110. doi: 10.1103/PhysRevB.82.064110
    [8] NAGAI T, ISHIDO T, SETO Y, et al. Pressure-induced spin transition in FeCO3-siderite studied by X-ray diffraction measurements [J]. Journal of Physics: Conference Series, 2010, 215(1): 012002.
    [9] FARFAN G, WANG S B, MA H W, et al. Bonding and structural changes in siderite at high pressure [J]. American Mineralogist, 2012, 97(8/9): 1421–1426.
    [10] LIN J F, LIU J, JACOBS C, et al. Vibrational and elastic properties of ferromagnesite across the electronic spin-pairing transition of iron [J]. American Mineralogist, 2012, 97(4): 583–591. doi: 10.2138/am.2012.3961
    [11] LIU J, LIN J F, MAO Z, et al. Thermal equation of state and spin transition of magnesiosiderite at high pressure and temperature [J]. American Mineralogist, 2014, 99(1): 84–93. doi: 10.2138/am.2014.4553
    [12] LIU J, LIN J F, PRAKAPENKA V B. High-pressure orthorhombic ferromagnesite as a potential deep-mantle carbon carrier [J]. Scientific Reports, 2015, 5(1): 07640. doi: 10.1038/srep07640
    [13] HAZEN R M, JONES A P, BAROSS J A. Carbon in Earth [J]. Reviews in Mineralogy and Geochemistry, 2013, 75(1).
    [14] ISSHIKI M, IRIFUNE T, HIROSE K, et al. Stability of magnesite and its high-pressure form in the lowermost mantle [J]. Nature, 2004, 427(6969): 60–63. doi: 10.1038/nature02181
    [15] OGANOV A R, ONO S, MA Y M, et al. Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in Earth’s lower mantle [J]. Earth and Planetary Science Letters, 2008, 273(1/2): 38–47.
    [16] LIN J F, SPEZIALE S, MAO Z, et al. Effects of the electronic spin transitions of iron in lower mantle minerals: implications for deep mantle geophysics and geochemistry [J]. Reviews of Geophysics, 2013, 51(2): 244–275. doi: 10.1002/rog.20010
    [17] SPEZIALE S, MILNER A, LEE V E, et al. Iron spin transition in Earth’s mantle [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(50): 17918–17922. doi: 10.1073/pnas.0508919102
    [18] TSUCHIYA T, WENTZCOVITCH R M, DA SILVAC R S, et al. Spin transition in magnesiowüstite in Earth’s lower mantle [J]. Physical Review Letters, 2006, 96(19): 198501. doi: 10.1103/PhysRevLett.96.198501
    [19] GONCHAROV A F, STRUZHKIN V V, JACOBSEN S D. Reduced radiative conductivity of low-spin (Mg, Fe)O in the lower mantle [J]. Science, 2006, 312(5777): 1205–1208. doi: 10.1126/science.1125622
    [20] LIN J F, VANKÓ G, JACOBSEN S D, et al. Spin transition zone in Earth’s lower mantle [J]. Science, 2007, 317(5845): 1740–1743. doi: 10.1126/science.1144997
    [21] CROWHURST J C, BROWN J M, GONCHAROV A F, et al. Elasticity of (Mg, Fe)O through the spin transition of iron in the lower mantle [J]. Science, 2008, 319(5862): 451–453. doi: 10.1126/science.1149606
    [22] WENTZCOVITCH R M, JUSSTO J F, WU Z, et al. Anomalous compressibility of ferropericlase throughout the iron spin cross-over [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(21): 8447–8452. doi: 10.1073/pnas.0812150106
    [23] MARQUARDT H, SPEZIALE S, REICHMANN H J, et al. Elastic shear anisotropy of ferropericlase in Earth’s lower mantle [J]. Science, 2009, 324(5924): 224–226. doi: 10.1126/science.1169365
    [24] HSU H, UMEMOTO K, WU Z Q, et al. Spin-state crossover of iron in lower-mantle minerals: results of DFT+U investigations [J]. Reviews in Mineralogy and Geochemistry, 2010, 71(1): 169–199. doi: 10.2138/rmg.2010.71.09
    [25] ANTONANGELI D, SIEBERT J, ARACNE C M, et al. Spin crossover in ferropericlase at high pressure: aseismologically transparent transition? [J]. Science, 2011, 331(6013): 64–67. doi: 10.1126/science.1198429
    [26] WU Z Q, JUSTO J F, WENTZCOVITCH R M. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions [J]. Physical Review Letters, 2013, 110(22): 228501. doi: 10.1103/PhysRevLett.110.228501
    [27] HOLMSTRÖM E, STIXRUDE L. Spin crossover in ferropericlase from first-principles molecular dynamics [J]. Physical Review Letters, 2015, 114(11): 117202. doi: 10.1103/PhysRevLett.114.117202
    [28] SONG Y L, HE K H, SUN J, et al. Effects of iron spin transition on the electronic structure, thermal expansivity and lattice thermal conductivity of ferropericlase: a first principles study [J]. Scientific Reports, 2019, 9(1): 4172. doi: 10.1038/s41598-019-40454-4
    [29] CERANTOLA V, MCCAMMON C, KUPENKO I, et al. High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover [J]. American Mineralogist, 2015, 100(11/12): 2670–2681.
    [30] MATTILA A, PYLKKÄNEN T, RUEFF J-P, et al. Pressure induced magnetic transition in siderite FeCO3 studied by X-ray emission spectroscopy [J]. Journal of Physics: Condensed Matter, 2007, 19(38): 386206. doi: 10.1088/0953-8984/19/38/386206
    [31] SHI H, LUO W L, JOHANSSON B, et al. First-principles calculations of the electronic structure and pressure-induced magnetic transition in siderite FeCO3 [J]. Physical Review B, 2008, 78(15): 155119. doi: 10.1103/PhysRevB.78.155119
    [32] HSU H, HUANG S C. Spin crossover and hyperfine interactions of iron in (Mg, Fe)CO3 ferromagnesite [J]. Physical Review B, 2016, 94(6): 060404. doi: 10.1103/PhysRevB.94.060404
    [33] FU S, YANG J, LIN J F. Abnormal elasticity of single-crystal magnesiosiderite across the spin transition in Earth’s lower mantle [J]. Physical Review Letters, 2017, 118(3): 036402. doi: 10.1103/PhysRevLett.118.036402
    [34] KRESSE G, FUTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [35] KRUKAU A V, VYDROV O A, IZMAYLOV A F, et al. Influence of the exchange screening parameter on the performance of screened hybrid functional [J]. The Journal of Chemical Physics, 2006, 125(22): 224106. doi: 10.1063/1.2404663
    [36] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [37] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 4106.
    [38] WU Z, JUSTO J F, DA SILVAC R S, et al. Anomalous thermodynamic properties in ferropericlase throughout its spin crossover [J]. Physical Review B, 2009, 80(1): 014409. doi: 10.1103/PhysRevB.80.014409
    [39] KOMABAYASHI T, HIROSE K, NAGAYA Y, et al. High-temperature compression of ferropericlase and the effect of temperature on iron spin transition [J]. Earth and Planetary Science Letters, 2010, 297(3/4): 691–699.
    [40] MAO Z, LIN J F, LIU J, et al. Thermal equation of state of lower-mantle ferropericlase across the spin crossover [J]. Geophysical Research Letters, 2011, 38(23): 23308.
  • 加载中
图(6)
计量
  • 文章访问数:  8653
  • HTML全文浏览量:  3490
  • PDF下载量:  41
出版历程
  • 收稿日期:  2019-12-06
  • 修回日期:  2019-12-26

目录

    /

    返回文章
    返回