对称与非对称钢化夹层玻璃的抗冲击性能

姚芬 张英杰 姚蓬飞 韩阳 李志强

姚芬, 张英杰, 姚蓬飞, 韩阳, 李志强. 对称与非对称钢化夹层玻璃的抗冲击性能[J]. 高压物理学报, 2020, 34(4): 044103. doi: 10.11858/gywlxb.20190861
引用本文: 姚芬, 张英杰, 姚蓬飞, 韩阳, 李志强. 对称与非对称钢化夹层玻璃的抗冲击性能[J]. 高压物理学报, 2020, 34(4): 044103. doi: 10.11858/gywlxb.20190861
YAO Fen, ZHANG Yingjie, YAO Pengfei, HAN Yang, LI Zhiqiang. Impact Resistance of Symmetrical and Asymmetric Tempered Laminated Glass[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044103. doi: 10.11858/gywlxb.20190861
Citation: YAO Fen, ZHANG Yingjie, YAO Pengfei, HAN Yang, LI Zhiqiang. Impact Resistance of Symmetrical and Asymmetric Tempered Laminated Glass[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044103. doi: 10.11858/gywlxb.20190861

对称与非对称钢化夹层玻璃的抗冲击性能

doi: 10.11858/gywlxb.20190861
基金项目: 国家自然科学基金(11672199);山西省自然科学基础研究项目(201601D011011)
详细信息
    作者简介:

    姚 芬(1995-),女,硕士研究生,主要从事冲击动力学研究. E-mail:yaofen4429@163.com

    通讯作者:

    李志强(1973-),男,教授,主要从事冲击动力学和计算力学研究. E-mail:lizhiqiang@tyut.edu.cn

  • 中图分类号: O347

Impact Resistance of Symmetrical and Asymmetric Tempered Laminated Glass

  • 摘要: 钢化夹层玻璃的透光性好、安全性能高,广泛应用于汽车、高层建筑等领域。为了研究不同玻璃厚度分布钢化夹层玻璃的抗冲击性能,进行了9种PVB钢化夹层玻璃的落锤冲击实验,分析未破裂状态和破裂状态下钢化夹层玻璃的冲击力、应变和位移随时间的变化规律。同时,利用高速摄像机记录裂纹的产生和扩展情况,分析破裂状态下夹层玻璃的裂纹分布形态。结果表明:钢化夹层玻璃的抗冲击性能与玻璃层数、厚度分布密切相关。双层钢化夹层玻璃中,外层玻璃越厚,内层玻璃越薄,抗冲击性能越好;三层钢化夹层玻璃中,外层玻璃越薄,内层玻璃越厚,抗冲击性能越好。

     

  • 图  夹层玻璃冲击实验系统

    Figure  1.  Impact test system for laminated glass

    图  应变片粘贴位置

    Figure  2.  Locations of strain gauges

    图  实验与模拟的冲击力时程曲线对比

    Figure  3.  Comparison of impact-time curves obtained from the experiment and simulation

    图  不同厚度钢化夹层玻璃的冲击力时程曲线

    Figure  4.  Impact-time curves of tempered laminated glass with different thicknesses

    图  钢化夹层玻璃的位移时程曲线

    Figure  5.  Displacement-time curves of tempered laminated glass

    图  未破裂时钢化夹层玻璃的能量位移曲线

    Figure  6.  Energy-deformation curves of tempered laminated glass at fracture state

    图  破裂时钢化夹层玻璃的冲击力时程曲线

    Figure  7.  Impact-time curves of tempered laminated glass at fracture state

    图  试件G1各测点的应变时程曲线

    Figure  8.  Strain-time curves of each measuring point of test piece G1

    图  G1试件的裂纹随时间演化过程

    Figure  9.  Time evolution of cracks in the specimen G1

    图  10  9种玻璃的最终裂纹分布形态

    Figure  10.  Final crack distributions of 9 types of glass

    表  1  实验试样

    Table  1.   Experimental specimens

    No.Total thickness/mmStructureThickness/mmQuantity of glass layer/piece
    G120.768/0.76/12
    G2G/PVB/G10/0.76/102
    G312/0.76/8
    G424.766/0.38/8/0.38/10
    G5G/PVB/G/PVB/G8/0.38/8/0.38/83
    G610/0.38/8/0.38/6
    G730.768/0.38/10/0.38/12
    G8G/PVB/G/PVB/G10/0.38/10/0.38/103
    G912/0.38/10/0.38/8
    下载: 导出CSV

    表  2  落锤冲击实验的实验结果

    Table  2.   Experimental results from drop hammer impact test

    No.Drop height/mmImpact energy/JPeak impact force/kNFracture mode
    G1650114.80263.51Inner and outer glass fracture
    G2700123.63273.62Inner glass fracture
    G3800141.29485.54Inner glass fracture
    G4900158.960114.25Inner glass fracture
    G5850150.12595.03Inner glass fracture
    G6850150.12589.12Inner and outer glass fracture
    G7850150.125142.93Inner glass fracture
    G8650114.802124.36Inner glass fracture
    G9600105.970103.24Inner glass fracture
    下载: 导出CSV

    表  3  外层玻璃的最大拉应变和内层玻璃的最大压应变

    Table  3.   Maximum tensile strains of the outer glass and maximum compressive strain of the inner glass

    No.Test pointStrain/10−4Glassy layerNo.Test pointStrain/10−4Glassy layer
    12.144−1.90
    G122.24G15−2.09
    32.386−2.00
    12.174−2.08
    G221.91Outer glassG25−1.94Inner glass
    31.856−2.03
    12.134−1.90
    G322.24G35−2.10
    32.396−2.00
    下载: 导出CSV
  • [1] 李胜杰. 爆炸载荷下夹层玻璃的动态响应及裂纹扩展的研究 [D]. 太原: 太原理工大学, 2015.

    LI S J. Study on the dynamic response and cracks propagation of laminated glass subjected to blast load [D]. Taiyuan: Taiyuan University of Technology, 2015.
    [2] 张晓颖, 李胜杰, 李志强. 爆炸载荷作用下夹层玻璃动态响应的数值模拟 [J]. 兵工学报, 2018, 39(7): 1379–1388. doi: 10.3969/j.issn.1000-1093.2018.07.016

    ZHANG X Y, LI S J, LI Z Q. Numerical simulation of dynamic response of laminated glass subjected to blast load [J]. Acta Armamentarii, 2018, 39(7): 1379–1388. doi: 10.3969/j.issn.1000-1093.2018.07.016
    [3] LE J, SONG L X, PENG X F, et al. Fracture mechanics analysis of thermally tempered glass plate: fracture induced by an embedded crack [J]. International Journal of Fracture, 2005, 132(4): 299–309. doi: 10.1007/s10704-005-1889-3
    [4] 庞世红. 夹层玻璃等效厚度研究 [D]. 北京: 中国建筑材料科学研究总院, 2009.

    PANG S H. Effective thickness research of laminated glass [D]. Beijing: China Building Materials Academy, 2009.
    [5] 李胜杰, 李志强, 王志华, 等. 爆炸载荷作用下夹层玻璃裂纹扩展的研究 [J]. 兵工学报, 2014, 35(Suppl 2): 72–77.

    LI S J, LI Z Q, WANG Z H, et al. Study of crack propagation in laminated glass under blast loads [J]. Acta Armamentarii, 2014, 35(Suppl 2): 72–77.
    [6] BEHR R A, KREMER P A, DHARANI L R, et al. Dynamic strains in architectural laminated glass subjected to low velocity impacts from small projectiles [J]. Journal of Materials Science, 1999, 34(23): 5749–5756. doi: 10.1023/A:1004702100357
    [7] SAXE T J, BEHR R A, MINOR J E, et al. Effects of missile size and glass type on impact resistance of “Sacrificial Ply” laminated glass [J]. Journal of Architectural Engineering, 2002, 8(1): 24–39. doi: 10.1061/(ASCE)1076-0431(2002)8:1(24)
    [8] 张宗恒, 张红, 姚小虎, 等. 低速冲击下PVB夹层玻璃的破坏模式试验研究 [J]. 兵工学报, 2017, 38(Suppl 1): 113–119.

    ZHANG Z H, ZHANG H, YAO X H, et al. Experimental study of failure modes of PVB laminated glass under low-velocity impact [J]. Acta Armamentarii, 2017, 38(Suppl 1): 113–119.
    [9] 陈晶晶, 许骏, 刘博涵, 等. PVB夹层玻璃裂纹扩展的参数化实验研究 [J]. 汽车工程, 2015, 37(2): 235–240.

    CHEN J J, XU J, LIU B H, et al. Parametric experimental study on the crack propagation of PVB laminated glass [J]. Automotive Engineering, 2015, 37(2): 235–240.
    [10] CHEN J J, XU J, YAO X F, et al. Different driving mechanisms of in-plane cracking on two brittle layers of laminated glass [J]. International Journal of Impact Engineering, 2014, 69: 80–85. doi: 10.1016/j.ijimpeng.2014.02.014
    [11] 许骏, 刘博涵, 葛东云, 等. 低速冲击下的聚乙烯醇缩丁醛夹层风挡玻璃动态响应研究 [J]. 兵工学报, 2010, 31(Suppl 1): 136–139.

    XU J, LIU B H, GE D Y, et al. Research on dynamic response of PVB laminated windshield subjected to low velocity impact [J]. Acta Armamentarii, 2010, 31(Suppl 1): 136–139.
    [12] 臧孟炎, 宋子林, 杨忠高. 行人保护分析用风挡玻璃的有限元模型 [J]. 华南理工大学学报(自然科学版), 2014, 42(4): 143–148. doi: 10.3969/j.issn.1000-565X.2014.04.022

    ZANG M Y, SONG Z L, YANG Z G. Finite element model of windscreenfor pedestrian protection [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(4): 143–148. doi: 10.3969/j.issn.1000-565X.2014.04.022
    [13] 林德佳, 臧孟炎. 基于内聚力模型的夹层玻璃冲击破坏仿真分析 [J]. 机械工程学报, 2017, 53(22): 176–181. doi: 10.3901/JME.2017.22.176

    LIN D J, ZANG M Y. Research on impact fracture behavior of the laminated glass based on cohesive zone model [J]. Journal of Mechanical Engineering, 2017, 53(22): 176–181. doi: 10.3901/JME.2017.22.176
    [14] 王欣, 李科峰, 凡思军, 等. Tm3+掺杂Bi2O3-SiO2-PbO玻璃的~2 μm发光光谱性质 [J]. 无机材料学报, 2013, 28(2): 165–170. doi: 10.3724/SP.J.1077.2013.12219

    WANG X, LI K F, FAN S J, et al. Spectral properties of ~2 μm emission of Tm3+ doped Bi2O3-SiO2-PbO glass [J]. Journal of Inorganic Materials, 2013, 28(2): 165–170. doi: 10.3724/SP.J.1077.2013.12219
    [15] ZHAO X L, LIANG X J, LUO H Y, et al. Third-order nonlinear optical properties of silver quantum dots doped in sodium borosilicate glass [J]. Journal of Inorganic Materials, 2013, 28(9): 1003–1008. doi: 10.3724/SP.J.1077.2013.12771
    [16] XU X Q, XU J, CHEN J J, et al. Investigation of dynamic multi-cracking behavior in PVB laminated glass plates [J]. International Journal of Impact Engineering, 2017, 100: 62–74. doi: 10.1016/j.ijimpeng.2016.10.013
    [17] 包亦望, 刘正权. 钢化玻璃自爆机理与自爆准则及其影响因素 [J]. 无机材料学报, 2016, 31(4): 401–406. doi: 10.15541/jim20150444

    BAO Y W, LIU Z Q. Mechanism and criterion of spontaneous breakage of tempered glass [J]. Journal of Inorganic Materials, 2016, 31(4): 401–406. doi: 10.15541/jim20150444
    [18] LIU B H, XU T N, XU X Q, et al. Energy absorption mechanism of polyvinyl butyral laminated windshield subjected to head impact: experiment and numerical simulations [J]. International Journal of Impact Engineering, 2016, 90: 26–36. doi: 10.1016/j.ijimpeng.2015.11.010
    [19] ZHANG X H, HAO H, MA G W. Laboratory test and numerical simulation of laminated glass window vulnerability to debris impact [J]. International Journal of Impact Engineering, 2013, 55: 49–62. doi: 10.1016/j.ijimpeng.2013.01.002
    [20] ALTER C, KOLLING S, SCHNEIDER J. An enhanced non-local failure criterion for laminated glass under low velocity impact [J]. International Journal of Impact Engineering, 2017, 109: 342–353. doi: 10.1016/j.ijimpeng.2017.07.014
    [21] CHEN S H, ZANG M Y, WANG D, et al. Finite element modelling of impact damage in polyvinyl butyral laminated glass [J]. Composite Structures, 2016, 138: 1–11. doi: 10.1016/j.compstruct.2015.11.042
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  6193
  • HTML全文浏览量:  2936
  • PDF下载量:  34
出版历程
  • 收稿日期:  2019-12-06
  • 修回日期:  2020-01-12

目录

    /

    返回文章
    返回