类向日葵夹芯圆柱壳径向冲击数值模拟

闫栋 王根伟 宋辉 王彬

闫栋, 王根伟, 宋辉, 王彬. 类向日葵夹芯圆柱壳径向冲击数值模拟[J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
引用本文: 闫栋, 王根伟, 宋辉, 王彬. 类向日葵夹芯圆柱壳径向冲击数值模拟[J]. 高压物理学报, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
YAN Dong, WANG Genwei, SONG Hui, WANG Bin. Numerical Simulation of Radial Impact on Sunflower-Like Sandwich Cylindrical Shell[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858
Citation: YAN Dong, WANG Genwei, SONG Hui, WANG Bin. Numerical Simulation of Radial Impact on Sunflower-Like Sandwich Cylindrical Shell[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 054201. doi: 10.11858/gywlxb.20190858

类向日葵夹芯圆柱壳径向冲击数值模拟

doi: 10.11858/gywlxb.20190858
基金项目: 国家自然科学基金(11872265);山西省青年科技研究基金(201701D221142)
详细信息
    作者简介:

    闫 栋(1992-),男,硕士研究生,主要从事金属薄壁夹芯结构的耐撞性研究. E-mail: 1690617047@qq.com

    通讯作者:

    王根伟(1974-),男,博士,副教授,主要从事新能源汽车安全与轻量化研究. E-mail: gwang@tyut.edu.cn

  • 中图分类号: O347

Numerical Simulation of Radial Impact on Sunflower-Like Sandwich Cylindrical Shell

  • 摘要: 金属薄壁结构由于其优异的轻质性和耐撞性,一直被广泛地应用在汽车、飞机和火车等交通工具的碰撞动能耗散系统中。以一种类向日葵薄壁夹芯吸能结构为研究对象,研究了在瓣尖压和瓣间压两种径向冲击载荷下,类向日葵薄壁夹芯结构的变形模式、能量吸收能力、比吸能和平均压缩力。结果表明,类向日葵薄壁夹芯结构的壁厚、花瓣数、加载速度以及加载方向都会对结构的耐撞性产生一定的影响。在质量恒定条件下,随着外壳厚度的增加,瓣尖压冲击方式下薄壁结构的吸能效率降低,瓣间压比瓣尖压的比吸能最高多出了44.6%。随着花瓣数的变化,金属薄壁结构的吸能效率存在一个最优值。

     

  • 图  类向日葵夹芯结构有限元模型

    Figure  1.  Finite element model of sunflower sandwich structure

    图  两种加载方式下不同位移对应的变形云图

    Figure  2.  Deformation nephogram under two loading modes at different displacements

    图  不同冲击速度下的力-位移曲线

    Figure  3.  Load-displacement curves at different impact velocities

    图  不同冲击速度、不同外壳壁厚条件下类向日葵夹芯结构的SEA和MCF

    Figure  4.  SEA and MCF of sunflower sandwich structure with different wall thicknesses at different impact velocities

    图  不同冲击速度下的载荷-位移曲线

    Figure  5.  Load-displacement curves at different impact velocities

    图  不同冲击速度、不同花瓣数下类向日葵夹芯结构的SEA和MCF

    Figure  6.  SEA and MCF of sunflower sandwich structure with various numbers of petals at different impact velocities

    表  1  冲击速度v = 20 m/s下的SEA和MCF

    Table  1.   SEA and MCF at v = 20 m/s

    t/mmSEA/(J·g−1)MCF/NIncrease ratio/%
    TSPGSPTSPGSP
    0.82.894.4594.40145.3435.05
    0.92.684.0887.43133.2334.31
    1.02.664.4686.90 145.8440.36
    1.12.314.1775.33136.1844.60
    1.22.283.5174.42114.7935.04
    下载: 导出CSV

    表  2  冲击速度v = 30 m/s下的SEA和MCF

    Table  2.   SEA and MCF at v = 30 m/s

    t/mmSEA/(J·g−1)MCF/NIncrease ratio/%
    TSPGSPTSPGSP
    0.83.074.83100.26157.6636.44
    0.92.874.6493.87 151.7238.15
    1.02.844.8192.76 157.2540.96
    1.12.634.6785.89 152.4243.68
    1.22.463.7480.29 122.1434.22
    下载: 导出CSV

    表  3  冲击速度v = 50 m/s下的SEA和MCF

    Table  3.   SEA and MCF at v = 50 m/s

    t/mmSEA/(J·g−1)MCF/NIncrease ratio/%
    TSPGSPTSPGSP
    0.84.085.27133.24172.0622.58
    0.93.835.08125.23165.8524.61
    1.03.615.40 117.93176.2833.15
    1.13.434.79112.05156.4428.39
    1.23.394.67110.81152.4127.41
    下载: 导出CSV
  • [1] ALEXANDER J. An approximate analysis of the collapse of thin cylindrical shells under axial loading [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10–15. doi: 10.1093/qjmam/13.1.10
    [2] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures [J]. Journal of Applied Mechanics, 1983, 50(4a): 727–734. doi: 10.1115/1.3167137
    [3] GUPTA N, PRASAD G E, GUPTA S. Plastic collapse of metallic conical frusta of large semi-apical angles [J]. International Journal of Crash Worthiness, 1997, 2(4): 349–366. doi: 10.1533/cras.1997.0054
    [4] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static crushing of square aluminium extrusions with aluminium foam filler [J]. International Journal of Mechanical Sciences, 1999, 41(8): 967–993. doi: 10.1016/S0020-7403(98)00064-2
    [5] HANSSEN A G, LANGSETH M, HOPPERSTAD O S. Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler [J]. International Journal of Impact Engineering, 2000, 24(5): 475–507. doi: 10.1016/S0734-743X(99)00170-0
    [6] 赵凯, 卢国兴, 沈建虎, 等. 圆环列系统吸能特性研究 [J]. 北京大学学报, 2007, 65(3): 312–316.

    ZHAO K, LU G X, SHEN J H, et al. Energy absorption characteristics of ring train system [J]. Journal of Peking University, 2007, 65(3): 312–316.
    [7] NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes [J]. Thin-Walled Structures, 2011, 49(1): 1–12. doi: 10.1016/j.tws.2010.07.002
    [8] 李志斌, 虞吉林, 郭刘伟. 具有诱导结构的铝合金薄壁方管轴向压缩吸能性能试验研究 [J]. 工程力学, 2012, 29(6): 346–352. doi: 10.6052/j.issn.1000-4750.2010.09.0663

    LI Z B, YU J L, GUO L W. Experimental study on energy absorption performance of aluminum alloy thin-walled square tube with induced structure in axial compression [J]. Engineering Mechanics, 2012, 29(6): 346–352. doi: 10.6052/j.issn.1000-4750.2010.09.0663
    [9] 杨鹏飞. 波纹夹芯板和结构的压缩与冲击吸能特性研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013.

    YANG P F. Study on compression and impact energy absorption characteristics of corrugated sandwich plates and structures [D]. Harbin: Harbin Engineering University, 2013.
    [10] 陈亦涛, 王帅, 刘凯欣. 径向冲击载荷下金属圆环系统的动态吸能特性 [C]//中国力学会第19届学术年会. 北京, 2013.
    [11] 于渤, 张钱城, 金峰, 等. 泡沫铝填充波纹板的动态压缩性能研究 [C]//中国力学大会-2013. 西安, 2013.
    [12] TARLOCHAN F, SAMER F, HAMOUDA A M S, et al. Design of thin wall structures for energy absorption applications: enhancement of crashworthiness due to axial and oblique impact forces [J]. Thin-Walled Structures, 2013, 71: 7–17. doi: 10.1016/j.tws.2013.04.003
    [13] 杨彬彬, 赵修平. 多胞金属管受径向冲击时的吸能特性 [J]. 海军航空工程学院学报, 2014, 29(6): 552–556. doi: 10.7682/j.issn.1673-1522.2014.06.010

    YANG B B, ZHAO X P. Energy absorption characteristics of polycellular metal tube subjected to radial impact [J]. Journal of Naval Aeronautical Engineering College, 2014, 29(6): 552–556. doi: 10.7682/j.issn.1673-1522.2014.06.010
    [14] WANG J, ZHANG Y, HE N, et al. Crashworthiness behavior of Koch fractal structures [J]. Materials & Design, 2018, 144: 229–244.
    [15] 韩宾. 波纹强化复合型多孔材料的力学行为研究 [D]. 西安: 西安交通大学, 2018.

    HAN B. Study on mechanical behavior of corrugated reinforced composite porous materials [D]. Xi’an: Xi’an Jiaotong University, 2018.
    [16] NGOC S H, LU G X, XIANG X M. Energy absorption of a bio-inspired honeycomb sandwich panel [J]. Journal of Materials Science, 2019, 54(8): 6286–6300. doi: 10.1007/s10853-018-3163-x
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  7031
  • HTML全文浏览量:  2813
  • PDF下载量:  51
出版历程
  • 收稿日期:  2019-11-18
  • 修回日期:  2019-11-28

目录

    /

    返回文章
    返回