饱水细砂岩动态抗拉与抗压强度试验对比研究

王光勇 余锐 马东方 侯远

王光勇, 余锐, 马东方, 侯远. 饱水细砂岩动态抗拉与抗压强度试验对比研究[J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
引用本文: 王光勇, 余锐, 马东方, 侯远. 饱水细砂岩动态抗拉与抗压强度试验对比研究[J]. 高压物理学报, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
WANG Guangyong, YU Rui, MA Dongfang, HOU Yuan. Comparative Study on Dynamic Tensile and Compressive Strength of the Saturated Fine Sandstone[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857
Citation: WANG Guangyong, YU Rui, MA Dongfang, HOU Yuan. Comparative Study on Dynamic Tensile and Compressive Strength of the Saturated Fine Sandstone[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044101. doi: 10.11858/gywlxb.20190857

饱水细砂岩动态抗拉与抗压强度试验对比研究

doi: 10.11858/gywlxb.20190857
基金项目: 国家自然科学基金-山西煤基低碳联合基金重点支持项目(U1810203)
详细信息
    作者简介:

    王光勇(1977—),男,博士,副教授,硕士生导师,主要从事岩土工程动载试验研究. E-mail:wgy2003@mail.ustc.edu.cn

  • 中图分类号: O347.3; TU45

Comparative Study on Dynamic Tensile and Compressive Strength of the Saturated Fine Sandstone

  • 摘要: 使用霍普金森压杆(SHPB)装置对天然状态和饱水状态下的细砂岩进行单轴动态压缩试验和动态劈裂试验,研究水和加载速率对细砂岩动态抗拉、抗压强度的影响及其差异性,并且结合数字图像相关(DIC)技术,分析细砂岩动态抗拉、抗压时的破坏机制。试验结果表明:两种状态下的细砂岩动态抗拉、抗压强度有明显的率效应,随着加载速率的增大而增大,且相同加载速率下,细砂岩在饱水状态下比天然状态下的动态抗压强度小,而抗拉强度比天然状态下的大;水的存在对细砂岩动态抗压强度和抗拉强度的应变率效应影响不大,但水能提高细砂岩动态抗压和抗拉强度增强因子,并且对细砂岩动态抗拉强度增强因子的提高更显著;在动态受压过程中饱水状态岩样表面的应变集中处较天然状态下明显更少,应变梯度更显著,在动态受拉过程中拉剪效果被削弱。

     

  • 图  SHPB装置实物

    Figure  1.  Picture of actual SHPB equipment

    图  波形整形前后对比

    Figure  2.  Comparison before and after waveform shaping

    图  SHPB装置示意图

    Figure  3.  Schematic of SHPB experiment

    图  动态试验试样

    Figure  4.  Specimens under dynamic tests

    图  应力平衡曲线

    Figure  5.  Curves of stress balance

    图  不同加载速率下细砂岩的应力-应变曲线

    Figure  6.  Stress-strain curves of the fine sandstone under different loading rates

    图  不同加载速率下细砂岩的动态抗压强度曲线

    Figure  7.  Relationship curves of dynamic compressive strength with different loading rates of the fine sandstone

    图  动载下天然岩样表面出现裂纹瞬时应变云图

    Figure  8.  Instantaneous strain nephogram of a natural rock specimen with the crack appearing on the surface under dynamic load

    图  动载下饱水岩样表面出现裂纹瞬时应变云图

    Figure  9.  Instantaneous strain nephogram of a saturated rock specimen with the crack appearing on the surface under dynamic load

    图  10  不同加载速率下细砂岩动态拉应力-时间曲线

    Figure  10.  Dynamic tensile stress-time curves of the fine sandstone under different loading rates

    图  11  不同加载速率下细砂岩的动态抗拉强度曲线

    Figure  11.  Relationship curves of dynamic tensile strength with different loading rates of the fine sandstone

    图  12  动态劈裂试验中天然状态岩样表面出现裂纹瞬时应变云图

    Figure  12.  Instantaneous strain nephogram of a natural rock sample with the crack appearing on the surface in dynamic splitting test

    图  13  动态劈裂试验中饱水状态岩样表面出现裂纹瞬时应变云图

    Figure  13.  Instantaneous strain nephogram of a saturated rock sample with the crack appearing on the surface in dynamic splitting test

    图  14  不同加载速率下饱水状态和天然状态岩样的动态强度增强因子关系曲线

    Figure  14.  Relationship curves of dynamic strength increasing factors for saturated and natural rock specimens under different loading rates

    表  1  试验分组

    Table  1.   Test group

    Type of testState of rock samplesGroupLoading rate/(m·s–1Temperature/℃
    Compression testNatural stateA-18.0120
    A-25.6220
    A-32.9320
    Saturation stateA-48.2720
    A-55.1220
    A-62.0520
    Splitting testNatural stateB-18.6520
    B-25.2820
    B-31.8720
    Saturation stateB-48.8920
    B-55.3420
    B-61.4420
    下载: 导出CSV
  • [1] 王宇, 常德龙, 李建林, 等. 复杂应力路径下饱水砂岩宏细观力学特性研究 [J]. 岩土力学, 2016, 37(11): 3105–3114.

    WANG Y, CHANG D L, LI J L, et al. Research on macro- and meso-mechanical properties of water-saturated sandstone under complex stress path [J]. Rock and Soil Mechanics, 2016, 37(11): 3105–3114.
    [2] 吴疆宇, 冯梅梅, 张文力, 等. 围压及孔隙水压对饱水砂岩能耗特征的影响 [J]. 应用基础与工程科学学报, 2019(1): 180–193.

    WU J Y, FENG M M, ZHANG W L, et al. Confining pressure and pore pressure effect on the energy dissipation of water-saturated sandstone [J]. Journal of Basic Science and Engineering, 2019(1): 180–193.
    [3] HAWKINS A B, MCCONNELL B J. Sensitivity of sandstone strength and deformability to changes in moisture content [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1992, 25(2): 115–130. doi: 10.1144/GSL.QJEG.1992.025.02.05
    [4] DYKE C G, DOBEREINER L. Evaluating the strength and deformability of sandstones [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 1991, 24(1): 123. doi: 10.1144/GSL.QJEG.1991.024.01.13
    [5] 高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型 [J]. 岩土力学, 2019, 40(3): 926–932.

    GAO F, XIONG X, ZHOU K P, et al. Strength deterioration model of saturated sandstone under freeze-thaw cycles [J]. Rock and Soil Mechanics, 2019, 40(3): 926–932.
    [6] ZHANG Z, GAO F. Experimental investigation on the energy evolution of dry and water-saturated red sandstones [J]. International Journal of Mining Science and Technology, 2015, 25(3): 383–388. doi: 10.1016/j.ijmst.2015.03.009
    [7] WU J, FENG M, YU B, et al. Experimental investigation on dilatancy behavior of water-saturated sandstone [J]. International Journal of Mining Science and Technology, 2018, 28(2): 323–329. doi: 10.1016/j.ijmst.2017.09.003
    [8] 王斌, 李夕兵. 单轴荷载下饱水岩石静态和动态抗压强度的细观力学分析 [J]. 爆炸与冲击, 2012, 32(4): 423–431. doi: 10.3969/j.issn.1001-1455.2012.04.013

    WANG B, LI X B. Mesomechanics analysis of static compressive strength and dynamic compressive strength of water-saturated rock under uniaxial load [J]. Explosion and Shock Waves, 2012, 32(4): 423–431. doi: 10.3969/j.issn.1001-1455.2012.04.013
    [9] 王斌, 李夕兵, 尹土兵, 等. 饱水砂岩动态强度的SHPB试验研究 [J]. 岩石力学与工程学报, 2010, 29(5): 1003–1009.

    WANG B, LI X B, YIN T B, et al. Split Hopkinson pressure bar (SHPB) experiments on dynamic strength of water-saturated sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(5): 1003–1009.
    [10] ZHOU Z L, CAI X, ZHAO Y, et al. Strength characteristics of dry and saturated rock at different strain rates [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(7): 1919–1925. doi: 10.1016/S1003-6326(16)64314-5
    [11] SELYUTINA N S, PETROV Y V. The water-saturation effect for concretes and rocks subjected to high strain rates [J]. Procedia Structural Integrity, 2018, 13: 705–709. doi: 10.1016/j.prostr.2018.12.117
    [12] 褚夫蛟, 刘敦文, 陶明, 等. 基于SHPB的不同含水状态砂岩动态响应 [J]. 工程科学学报, 2017, 39(12): 1783–1790.

    CHU F J, LIU D W, TAO M, et al. Dynamic response of sandstones with different water contents based on SHPB [J]. Chinese Journal of Engineering, 2017, 39(12): 1783–1790.
    [13] 高富强, 张军, 何朋立. 不同围压荷载和含水状态下砂岩SHPB试验研究 [J]. 矿业研究与开发, 2018, 38(6): 65–68.

    GAO F Q, ZHANG J, HE P L. SHPB test of sandstone with different confining loads and moisture contents [J]. Mining Research and Development, 2018, 38(6): 65–68.
    [14] 郑广辉, 许金余, 王鹏, 等. 不同饱水度红砂岩静态本构关系及动态力学性能研究 [J]. 振动与冲击, 2018, 37(16): 31–37.

    ZHENG G H, XU J Y, WANG P, et al. Static constitutive relation and dynamic mechanical properties of red sandstone with different water saturation [J]. Journal of Vibration and Shock, 2018, 37(16): 31–37.
    [15] WENG L, WU Z, LIU Q, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures [J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
    [16] KIM E, STINE M A, DE OLIVEIRA D B M, et al. Correlations between the physical and mechanical properties of sandstones with changes of water content and loading rates [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 255–262. doi: 10.1016/j.ijrmms.2017.11.005
    [17] ZHOU Z, CAI X, MA D, et al. Water saturation effects on dynamic fracture behavior of sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114: 46–61. doi: 10.1016/j.ijrmms.2018.12.014
    [18] 王茹, 唐春安, 王述红. 岩石点荷载试验若干问题的研究 [J]. 东北大学学报(自然科学版), 2008(1): 130–132, 140.

    WANG R, TANG C A, WANG S H. Study on several problems about point load test of rock [J]. Journal of Northeastern University (Natural Science), 2008(1): 130–132, 140.
    [19] 中国水电顾问集团成都勘测设计研究院. 工程岩体试验方法标准: GB/T 50266—2013 [S]. 北京: 中国计划出版社, 2013.
    [20] 王海龙, 李庆斌. 饱和混凝土静动力抗压强度变化的细观力学机理 [J]. 水利学报, 2006, 37(8): 958–962. doi: 10.3321/j.issn:0559-9350.2006.08.010

    WANG H L, LI Q B. Micro-mechanism of static and dynamic strengths for saturated concrete [J]. Journal of Hydraulic Engineering, 2006, 37(8): 958–962. doi: 10.3321/j.issn:0559-9350.2006.08.010
    [21] ZHENG D, LI Q. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity [J]. Engineering Fracture Mechanics, 2004, 71(16/17): 2319–2327.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  6477
  • HTML全文浏览量:  2665
  • PDF下载量:  30
出版历程
  • 收稿日期:  2019-11-15
  • 修回日期:  2019-12-01
  • 刊出日期:  2020-02-25

目录

    /

    返回文章
    返回