PDV Technology of Shock Initiation Reaction Process of Insensitive Explosive
-
摘要: 为研究A型钝感炸药冲击起爆反应演化过程,进行了火炮驱动蓝宝石飞片的一维平面冲击实验。实验中采用光子多普勒测速仪(Photonic Doppler velocimetry, PDV)技术测量冲击起爆后台阶型炸药的粒子速度。在炸药不同厚度台阶的后界面固定镀铝膜的楔形氟化锂(LiF)窗口,利用阻抗匹配将PDV测量的LiF窗口波后粒子速度转化为炸药样品波后粒子速度。比较组合式电磁粒子速度计和PDV两种测速技术,结果表明,相较于组合式电磁粒子速度计,PDV测量的粒子精度更高。简要分析了PDV测速探头角度、探头孔径、窗口折射率等影响,得到PDV测速的相对不确定度小于1%。
-
关键词:
- 光子多普勒测速仪(PDV) /
- 台阶型钝感炸药 /
- 边侧稀疏角 /
- 组合式电磁粒子速度计
Abstract: The shock initiation reaction of A-type insensitive explosive has been investigated by means of the one-dimensional planar impact experiment and photon Doppler velocimetry technique (PDV). In this experiment, a sapphire flyer was launched by the powder gun and then impacted the stepped insensitive explosive A. Meanwhile, the wedge-shaped lithium fluoride (LiF) windows coated with aluminum films were stuck to the different rear interfaces of stepped explosive. Therefore, the particle velocities among these interfaces could be measured. By employing the impedance matching method, the particle velocities in the explosive A were eventually obtained. The experimental results show that the PDV has a higher precision than the multiple electromagnetic particle velocity gauge. The effects of the speed probe’s angle, the probe’s aperture, and the refractive index of the window are briefly analyzed. The relative uncertainty of the measured speed is within 1%. -
表 1 台阶型炸药平面冲击实验参数
Table 1. Parameters of plane impact experiments on stepped explosive
Shot No. ρ0S/(g·cm−3) uimp/(km·s−1) up/(km·s−1) p0/GPa 01 1.897 1.385 1.151 10.66 02 1.897 1.502 1.240 11.93 03 1.895 1.550 1.277 12.47 表 2 台阶型炸药平面冲击实验数据
Table 2. Data of plane impact experiments on stepped explosive
Step thickness/mm uw/(km·s−1) us/(km·s−1) DS/(km·s−1) Shot 01 Shot 02 Shot 03 Shot 01 Shot 02 Shot 03 Shot 01 Shot 02 Shot 03 2 0.886 0.982 1.041 1.224 1.334 1.402 5.038 5.273 5.419 3 0.895 0.985 1.033 1.235 1.338 1.393 5.060 5.281 5.399 4 0.895 1.007 1.064 1.235 1.363 1.428 5.060 5.335 5.474 5 0.922 1.030 1.113 1.266 1.389 1.483 5.127 5.390 5.591 7 0.985 1.128 1.383 1.338 1.500 1.782 5.281 5.627 6.232 10 1.075 1.346 1.800 1.439 1.741 2.228 5.498 6.143 7.186 表 3 炸药二次加速时间间隔
Table 3. Time interval of secondary acceleration of explosive
Shot No. Δt2 /μs Δt3/μs Δt4/μs Δt5/μs 01 0.435 0.714 0.962 1.291 02 0.388 0.695 0.833 1.310 03 0.575 0.800 1.085 1.415 表 4 楔形炸药平面冲击实验参数
Table 4. Parameters of plane impact experiments on wedge-shaped explosive
Shot No. ρ01/(g·cm−3) ρ02/(g·cm−3) uimp/(km·s−1) 04 1.898 1.893 1.356 05 1.897 1.894 1.489 06 1.895 1.900 1.567 表 5 楔形炸药平面冲击实验数据
Table 5. Data of plane impact experiments on wedge-shaped explosive
Depth/mm DS/(km·s−1) us/(km·s−1) Shot 04 Shot 05 Shot 06 Shot 04 Shot 05 Shot 06 3 4.717 4.748 4.988 1.151 1.263 1.481 4 4.808 5.123 5.470 1.184 1.293 1.335 5 4.659 5.166 5.371 1.191 1.330 1.396 7 4.753 5.274 5.721 1.281 1.537 1.671 10 5.208 6.701 7.417 1.346 2.177 2.041 表 6 A型炸药平面冲击边侧稀疏波数据(声速C = 5 km/s)
Table 6. Data of sparse waves on the side of flat impact of A explosives (C = 5 km/s)
Shot No. M1M2/mm M1M3/mm M1M4/mm M1M5/mm M1M7/mm M1M10/mm 01 1.374 2.048 2.503 3.264 4.225 5.579 02 1.240 1.857 2.436 2.616 3.489 4.245 03 1.088 1.600 1.973 2.393 2.569 2.530 -
[1] MORO E A. New developments in photon Doppler velocimetry [J]. Journal of Physics: Conference Series, 2014, 500(14): 142023. doi: 10.1088/1742-6596/500/14/142023 [2] JENSEN B J, HOLTKAMP D B, RIGG P A, et al. Accuracy limits and window corrections for photon Doppler velocimetry [J]. Journal of Applied Physics, 2007, 101(1): 013523. doi: 10.1063/1.2407290 [3] DOLAN D H. Accuracy and precision in photonic Doppler velocimetry [J]. Review of Scientific Instruments, 2010, 81(5): 053905. doi: 10.1063/1.3429257 [4] GUSTAVSEN R L, BARTRAM B D, SANCHEZ N J. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon Doppler velocimetry [C]//Shock Compression of Condensed Matter 2009. USA: AIP Conference Proceedings, 2009: 253-256. [5] 张涛, 赵继波, 伍星, 等. JBO-9021炸药的冲击起爆Pop关系 [J]. 爆炸与冲击, 2018, 38(4): 743–748.ZHANG T, ZHAO J B, WU X, et al. Pop relationship of JBO-9021 explosives [J]. Explosion and Shock Waves, 2018, 38(4): 743–748. [6] 裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490.PEI H B, HUANG W B, QIN J C, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490. [7] 张琪敏, 张旭, 赵康, 等. TATB基钝感炸药JB-9014的冲击起爆反应增长规律 [J]. 爆炸与冲击, 2019, 39(4): 041405.ZHANG Q M, ZHANG X, ZHAO K, et al. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014 [J]. Explosion and Shock Waves, 2019, 39(4): 041405. [8] 刘俊明, 张旭, 裴红波, 等. JB-9014钝感炸药冲击Hugoniot关系测量 [J]. 高压物理学报, 2018, 32(3): 033202.LIU J M, ZHANG X, PEI H B, et al. Measurement of Hugoniot relation for JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 033202. [9] 刘俊明, 张旭, 赵康, 等. 用PVDF压力计研究未反应JB-9014钝感炸药的Grüneisen参数 [J]. 高压物理学报, 2018, 32(5): 051301.LIU J M, ZHANG X, ZHAO K, et al. Using PVDF gauge to study Grüneisen parameter of unreacted JB-9014 insensitive explosive [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301. [10] 赵万广, 周显明, 李加波, 等. LiF单晶的高压折射率及窗口速度的修正 [J]. 高压物理学报, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010ZHAO W G, ZHOU X M, LI J B, et al. Refractive index of LiF single crystal at high pressure and its window correction [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 571–576. doi: 10.11858/gywlxb.2014.05.010 [11] CAU J F. Inappropriate use of inclined electromagnetic velocity gauges in explosive [C]//Proceedings of 10th Symposium on Detonation. Office of Naval Research Report ONR, 1993: 33395-12. [12] 谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.TAN H. Experimental shock wave physics guidance [M]. Beijing: National Defense Industry Press, 2007.