利用电磁法研究HMX与TATB混合钝感炸药的冲击起爆特性

杨舒棋 张旭 彭文杨 舒俊翔 覃双 钟斌

杨舒棋, 张旭, 彭文杨, 舒俊翔, 覃双, 钟斌. 利用电磁法研究HMX与TATB混合钝感炸药的冲击起爆特性[J]. 高压物理学报, 2020, 34(3): 033403. doi: 10.11858/gywlxb.20190852
引用本文: 杨舒棋, 张旭, 彭文杨, 舒俊翔, 覃双, 钟斌. 利用电磁法研究HMX与TATB混合钝感炸药的冲击起爆特性[J]. 高压物理学报, 2020, 34(3): 033403. doi: 10.11858/gywlxb.20190852
YANG Shuqi, ZHANG Xu, PENG Wenyang, SHU Junxiang, QIN Shuang, ZHONG Bin. Impact Initiation Characteristics of TATB Based Insensitive Explosives Mixed with HMX by Electromagnetic Velocity Gauges[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033403. doi: 10.11858/gywlxb.20190852
Citation: YANG Shuqi, ZHANG Xu, PENG Wenyang, SHU Junxiang, QIN Shuang, ZHONG Bin. Impact Initiation Characteristics of TATB Based Insensitive Explosives Mixed with HMX by Electromagnetic Velocity Gauges[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033403. doi: 10.11858/gywlxb.20190852

利用电磁法研究HMX与TATB混合钝感炸药的冲击起爆特性

doi: 10.11858/gywlxb.20190852
基金项目: 军科委基础加强重点项目(2019-JCJQ-ZD-203);科学挑战专题(TZ2018001)
详细信息
    作者简介:

    杨舒棋(1993–),女,硕士研究生,主要从事冲击起爆研究. E-mail:yangshuqi77@126.com

    通讯作者:

    张 旭(1972–),男,研究员,博士生导师,主要从事流体动力学研究. E-mail:caepzx@sohu.com

  • 中图分类号: O384

Impact Initiation Characteristics of TATB Based Insensitive Explosives Mixed with HMX by Electromagnetic Velocity Gauges

  • 摘要: 为研究含有少量奥克托金(HMX)且以三氨基三硝基苯(TATB)为基的高能钝感炸药PBX-3的冲击起爆反应增长规律,采用火炮驱动蓝宝石飞片的方法和铝基组合式电磁粒子速度计技术进行了一维平面冲击实验。通过实验测量撞击表面及内部不同深度处的冲击波后粒子速度,得到PBX-3炸药的Hugoniot关系。根据冲击波示踪器所测数据绘制了炸药到爆轰的时间-距离(x-t)图,获得了反映炸药冲击起爆性能的Pop关系。将入射压力为12.964 GPa时达到爆轰的6条速度曲线修整成相同零点,通过读取6条曲线的分离点即反应区末端的C-J点,计算出化学反应区时间和宽度。

     

  • 图  组合式电磁粒子速度计实验测试系统

    Figure  1.  Measurement system of aluminum-based multiple electromagnetic particle velocity gauge

    1. Sabot; 2. Velocity-measuring ring; 3. Aluminum-based multiple electromagnetic particle velocity gauge; 4. Target buffer; 5. PBX-3 explosive sample; 6. Sapphire.

    图  铝基组合式电磁粒子速度计的安装

    Figure  2.  Installation of aluminum-based multiple electromagnetic particle velocity gauge

    图  两条拟合直线交点细节

    Figure  4.  Details of two fitted straight lines’ intersection

    图  未反应 PBX-3炸药的Hugoniot关系

    Figure  5.  Hugoniot relationship of uncreated PBX-3 explosive

    图  PBX-3炸药的Pop关系

    Figure  6.  Pop-plot of PBX-3 explosive

    图  PBX-3和TATB-1的Pop关系

    Figure  7.  Pop-plots of PBX-3 and TATB-1 explosive

    图  爆轰反应区结构

    Figure  8.  Structure of the detonation reaction zone

    图  6个速度曲线修正

    Figure  9.  Correction of 6 speed curves

    表  1  PBX-3炸药平面冲击实验参数

    Table  1.   Parameters of plane impact experiments on PBX-3 explosive

    Shot No.m/gρ0/(g·cm–3) DS/(km·s–1)up/(km·s–1)p0/GPa
    01 5001.9003.9660.724 5.456
    02 6001.9004.2830.830 6.754
    03 7001.9004.5161.019 8.743
    04 8001.9004.4921.096 9.354
    05 9001.9004.8081.13210.341
    061 1001.9005.2811.29212.964
    下载: 导出CSV

    表  2  PBX-3炸药的 DS-up实验数据

    Table  2.   Experimental results of DS-up for PBX-3 explosive

    Depth/mmShot 01Shot 02Shot 03
    up/(km·s–1)DS/(km·s–1)up/(km·s–1)DS/(km·s–1)up/(km·s–1)DS/(km·s–1)
    00.7244.1890.8304.2241.0193.489
    11.1043.489
    21.0494.259
    30.7764.1890.8944.2241.0334.686
    40.7373.9560.9114.5211.1184.726
    50.7323.7960.9384.2291.2824.546
    60.7663.8641.0344.3181.4744.799
    70.8333.9501.1874.5791.6825.252
    80.8734.0071.2794.6041.9575.165
    90.9374.1901.4505.470
    100.9834.2801.5984.960
    Depth/mmShot 04Shot 05Shot 06
    up/(km·s–1)DS/(km·s–1)up/(km·s–1)DS /(km·s–1)up/(km·s–1)DS/(km·s–1)
    01.0964.1641.1314.9551.2925.152
    11.1134.164
    21.1224.119
    31.1374.6801.3474.9551.6345.152
    41.2324.6821.5454.6991.9985.774
    51.4074.6641.6544.9472.2306.187
    61.6374.9901.8675.1442.0667.353
    71.9625.2132.1045.6562.2827.082
    82.5105.8682.1377.0832.1207.043
    92.3086.746
    102.3186.6992.2837.374
    下载: 导出CSV

    表  3  PBX-3炸药Pop关系相关参数

    Table  3.   Related parameters of PBX-3 explosive’s Pop-plot

    Shot No.ρ0/(g·cm–3)p0/GPaxD/mmtD/μs
    011.900 5.456
    021.900 6.7549.4392.224
    031.900 8.7437.3291.674
    041.900 9.3546.2571.421
    051.90010.3416.2341.292
    061.90012.9644.1430.785
    下载: 导出CSV

    表  4  PBX-3炸药化学反应区实验参数

    Table  4.   Parameters of chemical reaction zone of PBX-3 explosive

    Depth/mmup/(km·s–1)t/μsx/mmDepth/mmup/(km·s–1)t/μsx/mm
    51.5390.2261.429 81.4250.2261.454
    61.5400.2261.428 91.3700.2261.467
    71.4360.2261.452101.3860.2261.463
    下载: 导出CSV

    表  5  TATB基炸药反应区相关参数

    Table  5.   Related parameters of reaction zone of TATB-based explosive

    Shot No.x/mmt/μsSource
    PBX-31.449 ± 0.2000.226 ± 0.030This work
    PBX95022.10.28Ref.[8]
    JB-90141.5 ± 0.20.26 ± 0.02Ref.[9]
    JB-90141.750.31Ref.[10]
    下载: 导出CSV
  • [1] 张琪敏, 张旭, 赵康, 等. TATB基钝感炸药JB-9014的冲击起爆反应增长规律 [J]. 爆炸与冲击, 2019, 39(4): 041405.

    ZHANG Q M, ZHANG X, ZHAO K, et al. Law of reaction growth of shock initiation on the TATB based insensitive explosive JB-9014 [J]. Explosion and Shock Waves, 2019, 39(4): 041405.
    [2] HILL L G, GUSTAVSEN R L, ALCON R R, et al. Shock initiation of new and aged PBX 9501 measured with embedded electromagnetic particle velocity gauges: LA-13634-MS [R]. New Mexico, US: Los Alamos National Laboratory, 1999.
    [3] ZHANG X, WANG Y F, HUANG W B, et al. Reaction buildup of PBX explosives JOB-9003 under different initiation pressures [J]. Journal of Energetic Materials, 2017, 35(2): 197–212. doi: 10.1080/07370652.2016.1250841
    [4] GUSTAVSEN R L, GEHR R J, BUCHOLTZ S M, et al. Shock initiation of the tri-amino-tri-nitro-benzene explosive PBX9502 cooled to -55 ℃ [J]. Journal of Applied Physics, 2012, 112(7): 074909. doi: 10.1063/1.4757599
    [5] 张涛, 赵继波, 伍星, 等. 未反应JBO-9021炸药冲击雨贡纽曲线的研究 [J]. 高压物理学报, 2016, 30(6): 457–462. doi: 10.11858/gywlxb.2016.06.004

    ZHANG T, ZHAO J B, WU X, et al. Hugoniot curve of unreacted JBO-9021 explosive [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 457–462. doi: 10.11858/gywlxb.2016.06.004
    [6] GUSTAVSEN R L, SHEFFIELD S A, ALCON R R. Measurements of shock initiation in the tri-amino-tri-nitro-benzene based explosive PBX 9502: wave forms from embedded gauges and comparison of four different material lots [J]. Journal of Applied Physics, 2006, 99(11): 114907. doi: 10.1063/1.2195191
    [7] 张涛, 谷岩, 赵继波, 等. JBO-9021炸药的化学反应区宽度 [J]. 爆炸与冲击, 2017, 37(3): 415–421. doi: 10.11883/1001-1455(2017)03-0415-07

    ZHANG T, GU Y, ZHAO J B, et al. Chemical reaction zone length of JBO-9021 [J]. Explosion and Shock Waves, 2017, 37(3): 415–421. doi: 10.11883/1001-1455(2017)03-0415-07
    [8] SHEFFIELD S A, BLOOMQUIST D D, TARVER C M. Subnanosecond measurements of detonation fronts in solid high explosives [J]. The Journal of Chemical Physics, 1984, 80(8): 3831–3844. doi: 10.1063/1.447164
    [9] 裴红波, 黄文斌, 覃锦程, 等. 基于多普勒测速技术的JB-9014炸药反应区结构研究 [J]. 爆炸与冲击, 2018, 38(3): 485–490.

    PEI H B, HUANG W B, QIN J C, et al. Reaction zone structure of JB-9014 explosive measured by PDV [J]. Explosion and Shock Waves, 2018, 38(3): 485–490.
    [10] 赵同虎, 张新彦, 李斌, 等. 用光电法研究钝感炸药JB-9014反应区结构 [J]. 高压物理学报, 2002, 16(2): 111–119. doi: 10.3969/j.issn.1000-5773.2002.02.005

    ZHAO T H, ZHANG X Y, LI B, et al. Detonation reaction zones tructure of JB-9014 [J]. Chinese Journal of High Pressure Physics, 2002, 16(2): 111–119. doi: 10.3969/j.issn.1000-5773.2002.02.005
    [11] LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. doi: 10.1023/A:1002898505288
  • 加载中
图(9) / 表(5)
计量
  • 文章访问数:  7137
  • HTML全文浏览量:  3510
  • PDF下载量:  58
出版历程
  • 收稿日期:  2019-11-01
  • 修回日期:  2019-11-12

目录

    /

    返回文章
    返回