孔隙率对铌硅粉末混合物冲击反应的影响

凌绪玉 刘福生 汪贻高

凌绪玉, 刘福生, 汪贻高. 孔隙率对铌硅粉末混合物冲击反应的影响[J]. 高压物理学报, 2020, 34(3): 034101. doi: 10.11858/gywlxb.20190851
引用本文: 凌绪玉, 刘福生, 汪贻高. 孔隙率对铌硅粉末混合物冲击反应的影响[J]. 高压物理学报, 2020, 34(3): 034101. doi: 10.11858/gywlxb.20190851
LING Xuyu, LIU Fusheng, WANG Yigao. Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034101. doi: 10.11858/gywlxb.20190851
Citation: LING Xuyu, LIU Fusheng, WANG Yigao. Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 034101. doi: 10.11858/gywlxb.20190851

孔隙率对铌硅粉末混合物冲击反应的影响

doi: 10.11858/gywlxb.20190851
基金项目: 国家自然科学基金(11574254)
详细信息
    作者简介:

    凌绪玉(1974-), 女, 博士研究生, 主要从事高压材料的合成研究. E-mail: lingxymx@163.com

    通讯作者:

    刘福生(1966-), 男, 博士, 研究员, 主要从事凝聚态物理、冲击波技术研究. E-mail: fusheng_l@163.com

  • 中图分类号: O521.23

Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture

  • 摘要: 借助二级轻气炮加载平台和飞片撞击技术,在高冲击速度下实现不同初始孔隙率铌硅粉末混合物的冲击回收。对回收产物进行表征分析并探讨高冲击速度下孔隙率对铌硅粉末冲击化学反应的影响,实验结果表明:低孔隙率(10%)铌硅粉末混合物几乎不发生反应;20%孔隙率铌硅粉末发生不完全化学反应并生成了NbSi2;高孔隙率(35%)样品在相同冲击速度(飞片速度约为2.35 km/s)下发生完全反应获得单组分Nb5Si3。在高孔隙率的粉末混合物中,孔隙崩塌产生的高温是导致铌硅粉末反应物发生完全反应的主要原因。

     

  • 图  冲击回收实验装置示意图和实物

    Figure  1.  Schematic and photographs of the assembly for the shock recovery experiment

    图  冲击回收前、后铜回收盒

    Figure  2.  Copper capsule before and after shock loading

    图  不同孔隙率铌硅粉末冲击回收产物的XRD 结果

    Figure  3.  XRD patterns of the recycled samples of Nb-Si powder mixtures with different porosity

    图  10%孔隙率铌硅粉末冲击回收产物的SEM结果和EDS分析

    Figure  4.  SEM morphology and EDS spectra of the recycled samples of Nb-Si powder mixtures with the porosity of 10%

    图  20%孔隙率铌硅粉末冲击回收产物的SEM结果和EDS分析

    Figure  5.  SEM morphology and EDS spectra of the recycled samples of Nb-Si powder mixtures with the porosity of 20%

    图  35%孔隙率铌硅粉末冲击回收产物的SEM结果和EDS分析

    Figure  6.  SEM morphology and EDS spectra of the recycled samples of Nb-Si powder mixtures with the porosity of 35%

    图  不同孔隙率铌硅粉末冲击回收产物的DSC曲线

    Figure  7.  DSC curves of the shock recycled samples of Nb-Si powder mixtures with different porosity

    表  1  不同孔隙度的粉末混合物的冲击回收实验参数

    Table  1.   Shock loading conditions of Nb-Si powder mixtures with different porosity

    SampleFlyer velocity/
    (km·s−1)
    Density/
    (g·cm−3)
    Porosity/
    %
    Shock
    pressure/GPa
    Second shock
    pressure/GPa
    Shock
    temperature/K
    Nb-Si-P15.5051045601 173
    Nb-Si-P22.35 ± 0.024.8952039601 625
    Nb-Si-P33.9803529602 256
    下载: 导出CSV
  • [1] 乔良, 张先锋, 何勇. 颗粒金属材料冲击压缩细观数值模拟 [J]. 高压物理学报, 2013, 27(6): 863–871.

    QIAO L, ZHANG X F, HE Y. Meso-scale numerical simulation of the shock compression of particle metal materials [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863–871.
    [2] EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2013, 54(4): 181–213.
    [3] 崔乃夫, 陈鹏万, 周强. 冲击引发Ti-Si活性粉体反应过程研究 [J]. 高压物理学报, 2017, 31(4): 478–485. doi: 10.11858/gywlxb.2017.04.017

    CUI N F, CHEN P W, ZHOU Q. Shock induced reaction process of Ti-Si reactive powder [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 478–485. doi: 10.11858/gywlxb.2017.04.017
    [4] HERBOLD E B, THADHANI N N, JORDIN J L. Observation of a minimum reaction initiation threshold in ball-milled Ni+Al under high-rate mechanical loading [J]. Journal of Applied Physics, 2011, 109(6): 66108. doi: 10.1063/1.3549822
    [5] COOPER S R, BENSON D J, NESTERENKO V F. A numerical exploration of the role of void geometry on void collapse and hot spot formation in ductile materials [J]. International Journal of Plasticity, 2000, 16(5): 525–540. doi: 10.1016/S0749-6419(99)00072-8
    [6] SEIFERT M, SHEN Z, KRENKEL W. Nb(Si, C, N) composite materials densified by spark plasma sintering [J]. Journal of the European Ceramic Society, 2015, 35(12): 3319–3327. doi: 10.1016/j.jeurceramsoc.2015.02.005
    [7] WAN B, XIAO F, ZHANG Y. Theoretical study of structural characteristics, mechanical properties and electronic structure of metal (TM = V, Nb and Ta) silicides [J]. Journal of Alloys and Compounds, 2016, 681: 412–420. doi: 10.1016/j.jallcom.2016.04.253
    [8] SCHIESINGER M E, GOKHALE A B, ABBASCHIAN R. The Nb-Si (Niobium-Silicon) system [J]. Journal of Phase Equilibria, 1993, 14(4): 502–509. doi: 10.1007/BF02671971
    [9] SHI S, ZHU L, JIA L. Ab-initio study of alloying effects on structure stability and mechanical properties of α-Nb5Si3 [J]. Computational Materials Science, 2015, 108: 121–127. doi: 10.1016/j.commatsci.2015.06.019
    [10] VECCHIO K S, YU L H, MEYERS M A. Shock synthesis of silicides-I. experimentation and microtrural evolution [J]. Acta Metallurgica et Materialia, 1994, 42(3): 701–714. doi: 10.1016/0956-7151(94)90268-2
    [11] MEYERS M A, BATSANOV S S, GAVRILKIN S M. Effect of shock pressure and plastic strain on chemical reactions in Nb-Si and Mo-Si systems [J]. Materials Science and Engineering A, 1995, 201(1/2): 150–158. doi: 10.1016/0921-5093(95)09760-0
    [12] PRASAD A V S S, BASU S. Numerical modelling of shock-induced chemical reactions (SICR) in reactive powder mixtures using smoothed particle hydrodynamics (SPH) [J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23: 1–23.
    [13] LING X Y, LIU F S, ZHANG M J. Shock synthesis of niobium silicide (Nb5Si3) via the flyer plate impact technique with high impact velocities [J]. Journal of Alloys and Compounds, 2018, 740: 1032–1036. doi: 10.1016/j.jallcom.2017.12.089
    [14] QIN L, HU J, CUI C. Effect of Al content on reaction laser sintering of Ni-Al powder [J]. Journal of Alloys and Compounds, 2009, 473(1/2): 227–230. doi: 10.1016/j.jallcom.2008.05.039
    [15] 经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 197–199, 204–207.

    JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999: 197–199, 204–207.
    [16] 尹昊. 碳基纳米材料的爆炸合成及其机理研究 [D]. 北京. 北京理工大学, 2014: 13 - 16.

    YIN H. Study on the explosive synthesis and mechanism of carbon-based nanomaterials [D]. Beijing: Beijing Institute of Technology, 2014: 13–16.
    [17] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 长沙: 国防科技大学出版社, 1999: 273–274.

    TANG W H, ZHANG R Q. Introduction to the theory of state of matter equations and calculations [M]. Changsha: National Defense Science and Technology University Press, 1999: 273–274.
    [18] MA C L, KASAMA A, TANAKA H. Microstructures and mechanical properties of Nb/Nb-silicide in-situ composites synthesized by reactive of ball milled powders [J]. Materials Transactions, 2000, 40(3): 444–451.
    [19] QIAO L, ZHANG X F, HE Y. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113: 173513. doi: 10.1063/1.4803712
    [20] AYYAR A, CHAWLA N. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites [J]. Acta Materialia, 2007, 55(18): 6064–6073. doi: 10.1016/j.actamat.2007.06.044
    [21] 张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. doi: 10.11883/1001-1455(2010)02-0145-07

    ZHANG X F, ZHAO X N, QIAO L. The theoretical analysis of metal shock reaction process [J]. Explosion and Shock waves, 2010, 30(2): 145–151. doi: 10.11883/1001-1455(2010)02-0145-07
    [22] BAER M R. Modeling heterogeneous energetic materials at the mesoscale [J]. Thermochimica Acta, 2002, 384(1): 351–367.
    [23] 陈俊祥, 耿华运. 多孔材料温压状态方程计算简要评述 [J]. 高压物理学报, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767

    CHEN J X, GENG H Y. Review on evaluation of temperature-pressure equation of state of porous materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767
    [24] VREELAND T, MONTILLA K L, MUTZ A H. Shock wave initiation of the Ti5Si3 reaction in elemental powders [J]. Journal of Applied Physics, 1997, 82(6): 2840–2844. doi: 10.1063/1.366115
    [25] VOGLER T J, LEE M Y, GRADY D E. Static and dynamic compaction of ceramic powders [J]. International Journal of Solids and Structures, 2007, 44(2): 636–658. doi: 10.1016/j.ijsolstr.2006.05.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  7779
  • HTML全文浏览量:  2874
  • PDF下载量:  34
出版历程
  • 收稿日期:  2019-10-30
  • 修回日期:  2019-11-15

目录

    /

    返回文章
    返回