Influence of Initial Porosity on Shock Chemical Reaction of Nibium-Silicon Powder Mixture
-
摘要: 借助二级轻气炮加载平台和飞片撞击技术,在高冲击速度下实现不同初始孔隙率铌硅粉末混合物的冲击回收。对回收产物进行表征分析并探讨高冲击速度下孔隙率对铌硅粉末冲击化学反应的影响,实验结果表明:低孔隙率(10%)铌硅粉末混合物几乎不发生反应;20%孔隙率铌硅粉末发生不完全化学反应并生成了NbSi2;高孔隙率(35%)样品在相同冲击速度(飞片速度约为2.35 km/s)下发生完全反应获得单组分Nb5Si3。在高孔隙率的粉末混合物中,孔隙崩塌产生的高温是导致铌硅粉末反应物发生完全反应的主要原因。Abstract: By employing the two-stage light gas gun and flyer impact technology, the impact recovery experiments of nibium-silicon powder mixtures with different initial porosity at high impact intensity were achieved. The recycled products were characterized to investigate the effect of porosity on the impact chemical reaction of nibium-silicon powder at high impact strength. The results showed that the sample with low porosity (10%) was hardly reacted; When the porosity is 20%, the nibium-silicon powder experienced a partial chemical reaction to form a NbSi2 compound; As the porosity was increased to 35%, a complete reaction has occurred to generate a Nb5Si3 intermetallic compound under the same impact strength (the flyer velocity about 2.35 km/s). Such results have shown that the complete reaction in the powder reactant of high-porosity powder mixture is mainly due to the high temperature generated by the pore collapse.
-
Key words:
- nibium-silicon powder mixtures /
- high impact velocity /
- shock recovery /
- porosity /
- shock reaction
-
表 1 不同孔隙度的粉末混合物的冲击回收实验参数
Table 1. Shock loading conditions of Nb-Si powder mixtures with different porosity
Sample Flyer velocity/
(km·s−1)Density/
(g·cm−3)Porosity/
%Shock
pressure/GPaSecond shock
pressure/GPaShock
temperature/KNb-Si-P1 5.505 10 45 60 1 173 Nb-Si-P2 2.35 ± 0.02 4.895 20 39 60 1 625 Nb-Si-P3 3.980 35 29 60 2 256 -
[1] 乔良, 张先锋, 何勇. 颗粒金属材料冲击压缩细观数值模拟 [J]. 高压物理学报, 2013, 27(6): 863–871.QIAO L, ZHANG X F, HE Y. Meso-scale numerical simulation of the shock compression of particle metal materials [J]. Chinese Journal of High Pressure Physics, 2013, 27(6): 863–871. [2] EAKINS D E, THADHANI N N. Shock compression of reactive powder mixtures [J]. International Materials Reviews, 2013, 54(4): 181–213. [3] 崔乃夫, 陈鹏万, 周强. 冲击引发Ti-Si活性粉体反应过程研究 [J]. 高压物理学报, 2017, 31(4): 478–485. doi: 10.11858/gywlxb.2017.04.017CUI N F, CHEN P W, ZHOU Q. Shock induced reaction process of Ti-Si reactive powder [J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 478–485. doi: 10.11858/gywlxb.2017.04.017 [4] HERBOLD E B, THADHANI N N, JORDIN J L. Observation of a minimum reaction initiation threshold in ball-milled Ni+Al under high-rate mechanical loading [J]. Journal of Applied Physics, 2011, 109(6): 66108. doi: 10.1063/1.3549822 [5] COOPER S R, BENSON D J, NESTERENKO V F. A numerical exploration of the role of void geometry on void collapse and hot spot formation in ductile materials [J]. International Journal of Plasticity, 2000, 16(5): 525–540. doi: 10.1016/S0749-6419(99)00072-8 [6] SEIFERT M, SHEN Z, KRENKEL W. Nb(Si, C, N) composite materials densified by spark plasma sintering [J]. Journal of the European Ceramic Society, 2015, 35(12): 3319–3327. doi: 10.1016/j.jeurceramsoc.2015.02.005 [7] WAN B, XIAO F, ZHANG Y. Theoretical study of structural characteristics, mechanical properties and electronic structure of metal (TM = V, Nb and Ta) silicides [J]. Journal of Alloys and Compounds, 2016, 681: 412–420. doi: 10.1016/j.jallcom.2016.04.253 [8] SCHIESINGER M E, GOKHALE A B, ABBASCHIAN R. The Nb-Si (Niobium-Silicon) system [J]. Journal of Phase Equilibria, 1993, 14(4): 502–509. doi: 10.1007/BF02671971 [9] SHI S, ZHU L, JIA L. Ab-initio study of alloying effects on structure stability and mechanical properties of α-Nb5Si3 [J]. Computational Materials Science, 2015, 108: 121–127. doi: 10.1016/j.commatsci.2015.06.019 [10] VECCHIO K S, YU L H, MEYERS M A. Shock synthesis of silicides-I. experimentation and microtrural evolution [J]. Acta Metallurgica et Materialia, 1994, 42(3): 701–714. doi: 10.1016/0956-7151(94)90268-2 [11] MEYERS M A, BATSANOV S S, GAVRILKIN S M. Effect of shock pressure and plastic strain on chemical reactions in Nb-Si and Mo-Si systems [J]. Materials Science and Engineering A, 1995, 201(1/2): 150–158. doi: 10.1016/0921-5093(95)09760-0 [12] PRASAD A V S S, BASU S. Numerical modelling of shock-induced chemical reactions (SICR) in reactive powder mixtures using smoothed particle hydrodynamics (SPH) [J]. Modelling and Simulation in Materials Science and Engineering, 2015, 23: 1–23. [13] LING X Y, LIU F S, ZHANG M J. Shock synthesis of niobium silicide (Nb5Si3) via the flyer plate impact technique with high impact velocities [J]. Journal of Alloys and Compounds, 2018, 740: 1032–1036. doi: 10.1016/j.jallcom.2017.12.089 [14] QIN L, HU J, CUI C. Effect of Al content on reaction laser sintering of Ni-Al powder [J]. Journal of Alloys and Compounds, 2009, 473(1/2): 227–230. doi: 10.1016/j.jallcom.2008.05.039 [15] 经福谦. 实验物态方程导引 [M]. 第2版. 北京: 科学出版社, 1999: 197–199, 204–207.JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999: 197–199, 204–207. [16] 尹昊. 碳基纳米材料的爆炸合成及其机理研究 [D]. 北京. 北京理工大学, 2014: 13 - 16.YIN H. Study on the explosive synthesis and mechanism of carbon-based nanomaterials [D]. Beijing: Beijing Institute of Technology, 2014: 13–16. [17] 汤文辉, 张若棋. 物态方程理论及计算概论 [M]. 长沙: 国防科技大学出版社, 1999: 273–274.TANG W H, ZHANG R Q. Introduction to the theory of state of matter equations and calculations [M]. Changsha: National Defense Science and Technology University Press, 1999: 273–274. [18] MA C L, KASAMA A, TANAKA H. Microstructures and mechanical properties of Nb/Nb-silicide in-situ composites synthesized by reactive of ball milled powders [J]. Materials Transactions, 2000, 40(3): 444–451. [19] QIAO L, ZHANG X F, HE Y. Multiscale modelling on the shock-induced chemical reactions of multifunctional energetic structural materials [J]. Journal of Applied Physics, 2013, 113: 173513. doi: 10.1063/1.4803712 [20] AYYAR A, CHAWLA N. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites [J]. Acta Materialia, 2007, 55(18): 6064–6073. doi: 10.1016/j.actamat.2007.06.044 [21] 张先锋, 赵晓宁, 乔良. 反应金属冲击反应过程的理论分析 [J]. 爆炸与冲击, 2010, 30(2): 145–151. doi: 10.11883/1001-1455(2010)02-0145-07ZHANG X F, ZHAO X N, QIAO L. The theoretical analysis of metal shock reaction process [J]. Explosion and Shock waves, 2010, 30(2): 145–151. doi: 10.11883/1001-1455(2010)02-0145-07 [22] BAER M R. Modeling heterogeneous energetic materials at the mesoscale [J]. Thermochimica Acta, 2002, 384(1): 351–367. [23] 陈俊祥, 耿华运. 多孔材料温压状态方程计算简要评述 [J]. 高压物理学报, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767CHEN J X, GENG H Y. Review on evaluation of temperature-pressure equation of state of porous materials [J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030111. doi: 10.11858/gywlxb.20190767 [24] VREELAND T, MONTILLA K L, MUTZ A H. Shock wave initiation of the Ti5Si3 reaction in elemental powders [J]. Journal of Applied Physics, 1997, 82(6): 2840–2844. doi: 10.1063/1.366115 [25] VOGLER T J, LEE M Y, GRADY D E. Static and dynamic compaction of ceramic powders [J]. International Journal of Solids and Structures, 2007, 44(2): 636–658. doi: 10.1016/j.ijsolstr.2006.05.001