水下爆炸作用下高桩码头毁伤效应的数值研究

刘靖晗 唐廷 韦灼彬 李凌锋

刘靖晗, 唐廷, 韦灼彬, 李凌锋. 水下爆炸作用下高桩码头毁伤效应的数值研究[J]. 高压物理学报, 2020, 34(4): 045101. doi: 10.11858/gywlxb.20190850
引用本文: 刘靖晗, 唐廷, 韦灼彬, 李凌锋. 水下爆炸作用下高桩码头毁伤效应的数值研究[J]. 高压物理学报, 2020, 34(4): 045101. doi: 10.11858/gywlxb.20190850
LIU Jinghan, TANG Ting, WEI Zhuobin, LI Lingfeng. Numerical Study of Damage Effect for High-Piled Wharf Subjected to Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045101. doi: 10.11858/gywlxb.20190850
Citation: LIU Jinghan, TANG Ting, WEI Zhuobin, LI Lingfeng. Numerical Study of Damage Effect for High-Piled Wharf Subjected to Underwater Explosion[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045101. doi: 10.11858/gywlxb.20190850

水下爆炸作用下高桩码头毁伤效应的数值研究

doi: 10.11858/gywlxb.20190850
基金项目: 军队后勤科研计划项目(CHJ13J006);大学科研资助立项项目(425517K210)
详细信息
    作者简介:

    刘靖晗(1992-),男,博士研究生,主要从事港口工程、防护工程研究. E-mail:1226001717@qq.com

    通讯作者:

    唐 廷(1980-),男,博士,讲师,主要从事港口工程、防护工程研究.E-mail:tangting1980@126.com

  • 中图分类号: O383

Numerical Study of Damage Effect for High-Piled Wharf Subjected to Underwater Explosion

  • 摘要: 为研究水下爆炸对高桩码头的毁伤作用,建立高桩码头全耦合模型,从冲击波传播和气泡脉动两个阶段,通过LS-DYNA程序对水下爆炸作用下高桩码头的毁伤过程进行研究,探讨了水下爆炸作用下高桩码头动态响应和破坏机理,分析了炸药当量对高桩码头毁伤现象的影响,通过高桩码头剩余承载力评估了不同炸药当量的毁伤效应。结果表明:高桩码头毁伤积累主要在气泡第1次膨胀阶段快速发展,在气泡第1次脉动结束后毁伤基本形成;桩基随气泡脉动产生周期性往复变形,桩基顶部和中部为抗爆性能最薄弱部位,桩基浅水区的毁伤程度大于深水区,码头面板和横、纵梁毁伤较弱;随着炸药当量增加,炸药近场桩基发生弯剪破坏,码头横、纵梁连接处以及码头面板相继出现不同程度损伤。

     

  • 图  码头模型三视图(单位:cm)

    Figure  1.  Three views of wharf model (Unit:cm)

    图  高桩码头计算区域

    Figure  2.  Calculation region of high-piled wharf

    图  有限元模型

    Figure  3.  Finite element model

    图  炸药及测点位置示意图

    Figure  4.  Schematic of explosive and the measure points

    图  直桩的速度和加速度响应

    Figure  5.  Velocity and acceleration of straight pile

    图  斜桩的速度和加速度响应

    Figure  6.  Velocity and acceleration of oblique pile

    图  高桩码头毁伤和气泡脉动过程(Mark82)

    Figure  7.  Bubble pulse process and the damage process of the wharf (Mark82)

    图  直桩的速度和位移响应

    Figure  8.  Velocity and displacement of straight pile

    图  斜桩的速度和位移响应

    Figure  9.  Velocity and displacement of oblique pile

    图  10  冲击波和气泡脉动作用下高桩码头的毁伤

    Figure  10.  Damage of high-piled wharf subject to shock wave and bubble impulse

    图  11  高桩码头毁伤以及气泡脉动过程(Mark81)

    Figure  11.  Bubble pulse process and the damage process of the wharf (Mark81)

    图  12  高桩码头毁伤过程以及气泡脉动过程(Mark83)

    Figure  12.  Bubble pulse process and the damage process of the wharf (Mark83)

    图  13  重启动模型

    Figure  13.  Restart model

    表  1  材料参数

    Table  1.   Material parameters

    Materialρ/(kg·m−3)C0, C1 C2, C3C4C5C6E/(J·kg−1)
    Air1.29000.40.402.5×105
    Materialρ/(kg·m−3)cS1S2S3Γ
    Water1 0001 4802.56−1.9860.226 80.5
    Materialρ/(kg·m−3)ABωR1R2E0/(GJ·m−3)
    Explosive1 6303.74 × 10117.33 × 1090.34.150.957
    Materialρ/(kg·m−3)E/MPaG/MPa
    Soil1 800168
    下载: 导出CSV

    表  2  数值模拟与理论结果比较

    Table  2.   Comparison of the numerical and theoretical results

    Methodpmax-free/MPapmax-straight/MPapmax-oblique/MPaBubble
    2 m4 m6 m8 mBlast faceBack blast faceBlast faceBack blast faceT/sRm/m
    Theoretical144.1565.8641.6530.0968.0957.9033.8331.110.886.07
    Numerical153.2168.2142.2727.3472.3521.7633.8416.060.625.29
    Error/%6.293.571.499.146.25−62.420.03−48.38−29.55−12.85
    下载: 导出CSV

    表  3  高桩码头毁伤评估

    Table  3.   Damage assessment of high-piled wharf

    W/kgFxmax/cmtxmax/sDamage phenomenonDDamage
    level
    61.291.1429.40.12The middle and top part of the pile are slightly damaged.
    The bottom of the pile is slightly damaged.
    The connection of beams and piles is slightly damaged.
    The longitudinal beam and the wharf panel are not damaged.
    0.06Slight
    117.451.4257.70.15The middle part and the blasting face in top part of pile are damaged, and the reinforcement is exposed.
    The bottom of the pile is slightly damaged.
    The connection of beams and piles is slightly damaged.
    0.49Moderate
    272.701.88113.90.25The concrete at the top and middle of the pile are completely damaged, and the reinforcement is exposed.
    the bottom of the pile, longitudinal beam, transverse beamand panel are all damaged.
    The connection of beams and piles is damaged.
    0.76Severe
    下载: 导出CSV
  • [1] 刘美山, 吴新霞, 张恒伟, 等. 混凝土水下爆破炸药单耗试验分析 [J]. 爆破, 2007, 24(1): 10–13. doi: 10.3963/j.issn.1001-487X.2007.01.003

    LIU M S, WU X X, ZHANG H W, et al. Experimental analysis on specific charge of underwater explosion of concrete [J]. Blasting, 2007, 24(1): 10–13. doi: 10.3963/j.issn.1001-487X.2007.01.003
    [2] 李裕春, 程克明, 沈蔚, 等. 水中冲击波对混凝土结构破坏的实验研究 [J]. 材料工程, 2008, 307(12): 22–26.

    LI Y C, CHENG K M, SHEN W, et al. Damage analysis of concrete structure by underwater shock [J]. Engineering of Material, 2008, 307(12): 22–26.
    [3] 赵根, 刘美山. 水中爆炸水击波及其多次脉动的观测与分析 [J]. 长江科学院院报, 2003, 20(Suppl): 56–57.

    ZHAO G, LIU M S. Observation and analysis on shock wave and multiple pulsating caused by underwater blasting [J]. Journal of Yangtze River Scientific Research Institute, 2003, 20(Suppl): 56–57.
    [4] GEORGIN J F, REYNOUARD J M. Modeling of structures subjected to impact: concrete behavior under high strain rate [J]. Cement and Concrete Composites, 2003, 25(1): 131–143. doi: 10.1016/S0958-9465(01)00060-9
    [5] 李建阳, 李永池, 高光发. 混凝土水下径向不耦合爆破特性研究 [J]. 工程爆破, 2010, 16(1): 1–5. doi: 10.3969/j.issn.1006-7051.2010.01.001

    LI J Y, LI Y C, GAO G F. Study on blasting characteristics of underwater concrete with radial decoupling charge [J]. Engineering Blasting, 2010, 16(1): 1–5. doi: 10.3969/j.issn.1006-7051.2010.01.001
    [6] 张社荣, 王高辉, 王超, 等. 水下爆炸冲击荷载作用下混凝土重力坝的破坏模式 [J]. 爆炸与冲击, 2012, 32(5): 501–507. doi: 10.3969/j.issn.1001-1455.2012.05.009

    ZHANG S R, WANG G H, WANG C, et al. Failure mode analysis of concrete gravity dam subjected to underwater explosion [J]. Explosion and Shock Waves, 2012, 32(5): 501–507. doi: 10.3969/j.issn.1001-1455.2012.05.009
    [7] 王高辉, 张社荣, 卢文波, 等. 水下爆炸冲击荷载下混凝土重力坝的破坏效应 [J]. 水利学报, 2015, 46(6): 723–731.

    WANG G H, ZHANG S R, LU W B, et al. Damage effects of concrete gravity dams subjected to underwater explosion [J]. Journal of Hydraulic Engineering, 2015, 46(6): 723–731.
    [8] 闫秋实, 宁素瑜, 杜修力, 等. 水中近场爆炸作用下钢筋混凝土桩毁伤效应研究 [J]. 北京工业大学学报, 2019, 45(2): 55–61.

    YAN Q S, NING S Y, DU X L, et al. Damage effect for a typical reinforced concrete pile under the near field explosion in water [J]. Journal of Beijing University of Technology, 2019, 45(2): 55–61.
    [9] 刘靖晗, 唐廷, 韦灼彬, 等. 刚性柱附近浅水爆炸荷载特性研究 [J]. 高压物理学报, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704

    LIU J H, TANG T, WEI Z B, et al. Pressure characteristics of shallow water explosion near the rigid column [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 055104. doi: 10.11858/gywlxb.20180704
    [10] WANG G, WANG Y, LU W, et al. On the determination of the mesh size for numerical simulations of shock wave propagation in near field underwater explosion [J]. Applied Ocean Research, 2016, 38(59): 1–9.
    [11] TU Z, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36(1): 132–146. doi: 10.1016/j.ijimpeng.2007.12.010
    [12] MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension [J]. ACI Materials Journal, 1998, 95(6): 735–739.
    [13] BISCHOFF P H, PERRY S H. Compressive behaviour of concrete at high strain rates [J]. Materials and Structures, 1991, 24(6): 425–450. doi: 10.1007/BF02472016
    [14] 董琪, 韦灼彬, 唐廷, 等. 爆炸深度对浅水爆炸气泡脉动的影响 [J]. 高压物理学报, 2018, 32(2): 024102. doi: 10.11858/gywlxb.20170580

    DONG Q, WEI Z B, TANG T, et al. Influence of explosion depth on bubble pulsation in shallow water explosion [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 024102. doi: 10.11858/gywlxb.20170580
    [15] COLE R H. Underwater explosions [M]. Princeton, New Jersey: Princeton University Press, 1948: 118–127.
    [16] 张阿漫, 王诗平, 白兆宏, 等. 不同环境下气泡脉动特性实验研究 [J]. 力学学报, 2011, 43(1): 71–83. doi: 10.6052/0459-1879-2011-1-lxxb2010-278

    ZHANG A M, WANG S P, BAI Z H, et al. Experimental study on bubble pulse features under different circumstances [J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 71–83. doi: 10.6052/0459-1879-2011-1-lxxb2010-278
    [17] 师燕超. 爆炸荷载作用下钢筋混凝土结构的动态响应行为与损伤破坏机理 [D]. 天津: 天津大学, 2009.

    SHI Y C. Dynamic response and damage mechanism of reinforced concrete structures under blast loading [D]. Tianjin: Tianjin University, 2009.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  6325
  • HTML全文浏览量:  3240
  • PDF下载量:  38
出版历程
  • 收稿日期:  2019-10-29
  • 修回日期:  2019-11-20

目录

    /

    返回文章
    返回