High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)
-
摘要: 羟碳铈矿是一种重要的含水稀土氟碳酸盐矿物,了解其高压下的物理性质对于探讨氟和水的存在对碳酸盐矿物物性的影响具有重要意义。运用金刚石压腔(DAC)技术与激光拉曼光谱,在室温下原位开展了羟碳铈矿的高压拉曼光谱学研究。结果显示,在常压下由[CO3]2–振动引起的拉曼峰共有6条:面内弯曲振动引起的拉曼峰位于604、742 cm–1,对称伸缩振动引起的拉曼峰位于1 083、1 096和1 103 cm–1,而1 430 cm–1属于非对称伸缩振动;由[OH]–振动引起的拉曼峰有6条,分别位于3 174、3 197、3 290、3 345、3 526和3 648 cm–1。随着压力的增加(0~30 GPa),未发现拉曼峰的消失或新拉曼峰的出现,表明在测试压力范围内羟碳铈矿未发生相变。拉曼峰均往高波数偏移,其位移与压力呈现良好的线性正相关关系,由[CO3]2–的面内弯曲振动引起的拉曼峰对压力的依赖系数最小,为2(0.06) cm–1/GPa,而基团外振动引起的拉曼峰对压力的依赖系数最大,为4.2(0.11) cm–1/GPa。对比无水碳酸盐高压下拉曼峰的位移,认为[OH]–和F–的存在导致羟碳铈矿高压下结构中[CO3]2–基团的振动模式对压力的依赖性发生变化,进一步影响到晶体高压下的各向异性。这为研究地球深部碳酸盐的高压物性行为提供了新的启示。Abstract: Understanding the physical properties under high pressure of hydroxylbastnäsite-(Ce), an important hydrous rare earth element (REE) fluorocarbonate mineral, can provide key information to explore the effect of fluorine and hydroxyl on high-pressure behavior of carbonate minerals. Here Raman spectroscopy combined with diamond anvil cell (DAC) technology was employed to investigate the high-pressure properties of hydroxylbastnäsite-(Ce). At ambient conditions, the in-plane vibration bands of [CO3]2– are observed at 604 cm–1 and 742 cm–1, the symmetrical stretching bands are at 1 083, 1 096, and 1 103 cm–1, and the asymmetric stretching vibration is at 1 430 cm–1. Six vibration peaks of [OH]– are at 3 174, 3 197, 3 290, 3 345, 3 526 and 3 648 cm–1, respectively. The observation of three discrete [CO3]2– symmetrical stretching bands, instead of one, indicates that there may be at least three structurally-nonequivalent [CO3]2– groups in the hydroxyl-bästnasite-(Ce) structure. On compression, all of the Raman peaks show a continuous shift to the higher frequency and no new peaks appear, suggesting that no phase transition occurs up to 30 GPa at room temperature. The slope of the in-plane bending vibration of [CO3]2– is the smallest, about 2(0.06) cm–1/GPa. Compared with the anhydrous carbonate, it can be inferred that the [OH]– and F– in the structures of hydroxylbastnäsite-(Ce) lead to the compression anisotropy. Our results provide new clues for studying the high-pressure physical behavior of carbonates in the deep earth.
-
图 1 羟碳铈矿常压拉曼光谱(蓝色实线代表RRUFF数据库中羟碳铈矿的数据[12],红色实线代表本实验测得的羟碳铈矿数据,黑色实线代表氟碳铈矿的数据。)
Figure 1. Raman spectra of hydroxylbastnäsite-(Ce) at ambient conditions (The solid blue line represents the data for the hydroxylbastnäsite-(Ce) in the RRUFF database[12]; the solid red line represents the hydroxylbastnäsite-(Ce) data measured in this experimental sample; the solid black line represents the data for bastnäsite.)
表 1 常见稀土氟碳酸盐矿物常压拉曼峰
Table 1. Atmospheric pressure Raman peaks of common rare earth fluorocarbonate minerals
Mineral Chemical formula Raman peak/cm–1 [CO3]2– [OH]– Cordylite[13] Ce2Ba[CO3]3F2 720 967 1 088 1 538 628 Bastnäsite[13] Ce[CO3]F 732 835 1 098 1 476 1 447 Hydroxylbastnäsite-(Ce)[12] Ce[CO3][(OH)0.65F0.35] 1 080 3 235 1 087 3 493 1 098 3 568 3 638 Hydroxylbastnäsite-(Ce)[14] Ce[CO3][(OH)0.85F0.15] 726 879 1 079 1 390 3 491 1 097 1 425 3 564 3 630 3 648 Hydroxylbastnäsite-(Ce)* Ce[CO3][(OH)0.62F0.38] 604 1 083 1 430 3 174 742 1 096 3 200 1 103 3 290 3 345 3 526 3 648 Note: * represents the experimental data. 表 2 不同压力下羟碳铈矿拉曼峰峰位
Table 2. Raman peaks position of hydroxylbastnäsite-(Ce) under different pressures
Pressure/GPa Raman peak/cm–1 REE-O/F [CO]32– [OH]– 0.7 168.7 262.2 357.8 411.4 742.2 1 084.8 1 093.7 3 169.7 1.2 166.2 263.6 360.1 408.9 741.9 1 084.8 1 095.9 1 102.7 3 172.8 2.0 168.1 272.7 363.5 410.0 741.4 1 087.0 1 098.2 1 104.9 3 172.1 3.3 171.7 279.6 368.9 416.6 745.1 1 089.2 1 102.6 1 109.2 3 176.9 4.7 174.3 285.1 375.8 420.4 744.6 1 093.7 1 107.1 1 113.6 3 177.9 5.8 177.5 292.3 380.4 427.2 749.9 1 097.1 1 111.5 1 118.2 6.2 180.4 295.3 383.8 429.5 751.6 1 098.2 1 111.5 3 179.4 7.5 182.7 300.8 385.4 433.9 754.1 1 100.4 1 114.9 1 122.7 3 179.1 9.6 187.8 312.0 401.9 445.6 763.6 1 107.1 1 122.7 1 129.4 3 181.7 10.9 190.5 315.9 404.6 448.4 760.9 1 109.3 1 124.9 1 131.4 3 183.4 11.5 196.8 321.4 410.6 455.5 764.5 1 113.8 1 128.4 1 135.5 3 183.5 13.5 201.7 326.6 413.6 459.8 769.0 1 116.0 1 131.6 1 137.9 3 185.8 14.0 199.2 329.7 417.9 466.3 766.2 1 118.2 1 134.7 1 142.4 3 187.0 16.0 205.7 339.7 424.9 476.0 768.6 1 125.9 1 140.4 1 149.1 3 187.2 18.0 209.9 344.7 430.1 479.6 777.0 1 129.3 1 144.9 3 189.9 18.6 205.8 349.6 433.5 484.2 776.9 1 130.4 1 146.0 3 192.4 20.1 214.9 354.7 438.2 489.3 778.8 1 133.8 1 149.3 3 189.7 22.0 214.6 359.0 443.3 490.9 783.4 1 136.0 1 151.5 3 190.4 23.1 219.0 360.4 446.1 499.4 781.6 1 138.2 1 156.0 1 164.8 3 192.5 24.0 223.3 364.5 448.2 502.2 791.0 1 142.7 1 158.2 1 169.2 3 192.7 25.7 228.3 368.0 451.6 506.7 789.0 1 144.9 1 160.4 1 173.6 3 192.8 27.0 240.2 376.9 474.8 519.2 1 151.1 1 164.8 3 193.6 28.8 235.5 380.2 1 151.5 1 168.1 30.0 238.9 391.0 1 153.7 1 172.8 表 3 不同拉曼峰的压力依赖系数及误差
Table 3. Pressure dependence coefficients and errors for different Raman peaks
Raman
peaks/cm–1Dependence
coefficients/(cm–1·GPa–1)Error Raman
peaks/cm–1Dependence
coefficients/(cm–1·GPa–1)Error 169 2.5 0.06 1 083 2.5 0.04 262 4.2 0.10 1 096 2.6 0.05 358 4.0 0.11 1 103 2.9 0.05 404 4.2 0.07 3 174 0.8 0.05 742 2.0 0.07 3 197 1.7 0.12 -
[1] MERLINI M, HANFLAND M, CRICHTON W A. CaCO3-Ⅲ and CaCO3-Ⅵ, high-pressure polymorphs of calcite: possible host structures for carbon in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2012, 333/334: 265–271. doi: 10.1016/j.jpgl.2012.04.036 [2] SUITO K, NAMBA J, HORIKAWA T. Phase relations of CaCO3 at high pressure and high temperature [J]. American Mineralogist, 2001, 86(9): 997–1002. doi: 10.2138/am-2001-8-906 [3] MERRILL L, BASSETT W A. The crystal structure of CaCO3(Ⅱ), a high-pressure metastable phase of calcium carbonate [J]. Acta Crystallographica Section B, 1975, 31(2): 343–349. doi: 10.1107/S0567740875002774 [4] ANTAO S M, MULDER W H, HASSAN I, et al. Cation disorder in dolomite, CaMg(CO3)2, and its influence on the aragonite+magnesite dolomite reaction boundary [J]. American Mineralogist, 2004, 89: 1142–1147. doi: 10.2138/am-2004-0728 [5] PEARSON D G, BRENKER F E, NESTOLA F, et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond [J]. Nature, 2014, 507(7491): 221–224. doi: 10.1038/nature13080 [6] TOBIAS G, STEPHAN K, ARON R, et al. The effect of fluorine on the stability of wadsleyite: implications for the nature and depths of the transition zone in the Earth’s mantle [J]. Earth and Planetary Science Letters, 2018, 482: 236–244. doi: 10.1016/j.jpgl.2017.11.011 [7] 刘云贵, 吕政星, 宋海鹏, 等. 金刚石荧光机制的研究及其对高压拉曼光谱测试的意义 [J]. 高压物理学报, 2019, 33(4): 043101.LIU Y G, LÜ Z X, SONG H P, et al. Fluorescence mechanism of diamond and the significance in high-pressure raman spectrometry [J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 043101. [8] 韩茜, 吴也, 黄海军. BiFeO3高压拉曼光谱研究 [J]. 高压物理学报, 2018, 32(5): 051202.HAN X, WU Y, HUANG H J. High pressure raman investigation of BiFeO3 [J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202. [9] YANG H, SANO J L, EICHLER C, et al. Iranite, CuPb10(CrO4)6(SiO4)2(OH)2, isomorphous with hemihedrite [J]. Acta Crystallographica, 2007, C63: i122–i124. [10] YANG H, ZWICK J, DOWNS R T, et al. Isokite, CaMg(PO4)F, isostructural with titanite [J]. Acta Crystallographica, 2007, 63(12): i89–i90. [11] LIU D, PANG Y W, YE Y, et al. In-situ high-temperature vibrational spectra for synthetic and natural clinohumite: implications for dense hydrous magnesium silicates in subduction zones [J]. American Mineralogist, 2019, 104: 53–63. doi: 10.2138/am-2019-6604 [12] YANG H, ROBERT F D, PAMELA G, et al. Crystal structure and Raman spectrum of hydroxyl-bästnasite-(Ce), CeCO3(OH) [J]. American Mineralogist, 2008, 93: 698–701. doi: 10.2138/am.2008.2827 [13] 洪文兴, 何松裕, 黄舜华, 等. 稀土氟碳酸盐矿物的拉曼光谱研究 [J]. 光谱学与光谱分析, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010HONG W X, HE S Y, HUANG S H, et al. A Raman spectral studies of rare-earth (REE) fluoro-carbonate minerals [J]. Spectroscopy and Spectral Analysis, 1999, 19(4): 546–549. doi: 10.3321/j.issn:1000-0593.1999.04.010 [14] KIYONORI M, RITSURO M, TETSUO M, et al. Crystal structure of hydroxylbastnäsite-(Ce) from Kamihouri, Miyazaki Prefecture, Japan [J]. Journal of Mineralogical and Petrological Sciences, 2013, 108(6): 326–334. doi: 10.2465/jmps.121129 [15] XU J G, KUANG Y Q, ZHANG B, et al. High-pressure study of azurite Cu3(CO3)2(OH)2 by synchrotron radiation X-ray diffraction and Raman spectroscopy [J]. Physics and Chemistry of Minerals, 2015, 42(10): 805–816. doi: 10.1007/s00269-015-0764-7 [16] PHILIPPE G, CLAUDINE B, BRUNO R, et al. Raman spectroscopic studies of carbonates. Part I: high-pressure and high-temperature behaviour of calcite, magnesite, dolomite and aragonite [J]. Physics and Chemistry of Minerals, 1993, 20(1): 1–18. [17] MINCH R, SEOUNG D H, EHM L, et al. High-pressure behavior of otavite (CdCO3) [J]. Journal of Alloys and Compounds, 2010, 508(2): 251–257. doi: 10.1016/j.jallcom.2010.08.090 [18] 何运鸿, 田雨, 赵慧芳, 等. 高氯酸钠高压相变的拉曼光谱证据 [J]. 高压物理学报, 2018, 32(4): 041201.HE Y H, TIAN Y, ZHAO H F, et al. Raman evidences for phase transition of sodium perchlorate at high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201. [19] 田雨, 刘雪廷, 何运鸿, 等. NaCl-O2体系高温高压化学反应的拉曼光谱证据 [J]. 高压物理学报, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003TIAN Y, LIU X T, HE Y H, et al. Raman evidences of chemical reaction of NaCl-O2 system at high pressure and high temperature [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692–697. doi: 10.11858/gywlxb.2017.06.003 [20] 刘曦, 代立东, 邓力维, 等. 近十年我国在地球内部物质高压物性实验研究方面的主要进展 [J]. 高压物理学报, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001LIU X, DAI L D, DENG L W, et al. Recent progresses in some fields of high-pressure physics relevant to Earth sciences achieved by Chinese scientists [J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 657–681. doi: 10.11858/gywlxb.2017.06.001