商业纯钛自加热高压热处理的力学性能

任玉铎 张洋 罗坤

任玉铎, 张洋, 罗坤. 商业纯钛自加热高压热处理的力学性能[J]. 高压物理学报, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846
引用本文: 任玉铎, 张洋, 罗坤. 商业纯钛自加热高压热处理的力学性能[J]. 高压物理学报, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846
REN Yuduo, ZHANG Yang, LUO Kun. Properties of Commercial Pure Titanium under Self-Heating and High-Pressure Heating Treatment[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846
Citation: REN Yuduo, ZHANG Yang, LUO Kun. Properties of Commercial Pure Titanium under Self-Heating and High-Pressure Heating Treatment[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 051302. doi: 10.11858/gywlxb.20190846

商业纯钛自加热高压热处理的力学性能

doi: 10.11858/gywlxb.20190846
基金项目: 中国博士后科学基金(2017M620097)
详细信息
    作者简介:

    任玉铎(1985-),男,博士,讲师,主要从事纳米材料性能研究. E-mail:renyd_work@sina.com

  • 中图分类号: O521.2

Properties of Commercial Pure Titanium under Self-Heating and High-Pressure Heating Treatment

  • 摘要: 研究了压力对商业纯钛(CPTi)淬火过程的影响。分别制备了退火、水淬及高压处理样品用于比较,分析了相组成和显微组织,并测量了显微硬度。结果表明:高压淬火处理后,样品组织均为Ti马氏体;随着压力的增加,晶粒生长被抑制,显微硬度增加。与常压水淬样品相比,在低压处理后样品硬度没有显著升高。为了研究高压处理后样品的拉伸性能,对采用自加热方式的高温高压处理样品进行了拉伸试验。研究表明,处理后样品强度有所提高,并且延展性良好,接近原始样品。

     

  • 图  高压组装示意图

    Figure  1.  Schematic of high pressure assembly

    图  不同处理方法得到的CPTi样品的XRD谱

    Figure  2.  XRD patterns of CPTi samples after different treatments

    图  AR和WQ样品的金相照片

    Figure  3.  Metallographs of AR and WQ samples

    图  1 173 K、不同压力下处理的GC样品的金相照片

    Figure  4.  Metallographs of the samples treated at 1 173 K under different pressures in graphite capsule

    图  不同压力下自加热处理后SH样品的金相照片

    Figure  5.  Metallographs of the samples treated at 1 173 K under different pressures by self-heating

    图  不同处理方法得到的CPTi样品的显微硬度

    Figure  6.  Microhardness of CPTi after different treatments

    图  不同处理方法下CPTi样品马氏体板条尺寸变化

    Figure  7.  Grain size/thickness of CPTi samples after different treatments

    图  不同压力下自加热法处理后样品的应力-应变曲线

    Figure  8.  Engineering stress-engineering strain curves of samples treated by self-heating under different pressures

    表  1  采用自加热法在1 173 K、不同压力下处理的CPTi样品的拉伸性能

    Table  1.   Tensile properties of CPTi treated by self-heating at 1 173 K under different pressures

    ConditionUTS/MPaYield stress/MPaElongation/%
    AR331.4298.144.7
    WQ461.5409.830.2
    SH, 2 GPa, 1 173 K470.2425.442.3
    SH, 3 GPa, 1 173 K477.8429.641.1
    SH, 4 GPa, 1 173 K480.2446.440.2
    SH, 5 GPa, 1 173 K495.2455.536.7
    下载: 导出CSV
  • [1] 孟宪伟, 赵锦秀, 程建雄, 等. TC4钛合金热处理工艺的研究现状及进展 [J]. 装备制造与教育, 2019, 33(3): 28–30, 42.
    [2] LONG M, RACK H J. Titanium alloys in total joint replacement—a materials science perspective [J]. Biomaterials, 1998, 19(18): 1621–1639. doi: 10.1016/S0142-9612(97)00146-4
    [3] WIELEWSKI E, SIVIOUR C R, PETRINIC N. On the correlation between macrozones and twinning in Ti-6Al-4V at very high strain rates [J]. Scripta Materialia, 2012, 67(3): 229–232. doi: 10.1016/j.scriptamat.2012.04.026
    [4] SUN F, NOWAK S, GLORIANT T, et al. Influence of a short thermal treatment on the superelastic properties of a titanium-based alloy [J]. Scripta Materialia, 2010, 63(11): 1053–1056. doi: 10.1016/j.scriptamat.2010.07.042
    [5] LIU Z, WELSCH G. Effects of oxygen and heat treatment on the mechanical properties of alpha and beta titanium alloys [J]. Metallurgical Transactions A, 1988, 19(3): 527–542. doi: 10.1007/BF02649267
    [6] KIM W J, YOO S J, LEE J B. Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature [J]. Scripta Materialia, 2010, 62(7): 451–454. doi: 10.1016/j.scriptamat.2009.12.008
    [7] LIANG S X, YIN L X, CHE H W, et al. Effects of Al content on structure and mechanical properties of hot-rolled ZrTiAlV alloys [J]. Materials & Design, 2013, 52: 246–250.
    [8] STOLYAROV V V, ZEIPPER L, MINGLER B, et al. Influence of post-deformation on CP-Ti processed by equal channel angular pressing [J]. Materials Science and Engineering A, 2008, 476(1/2): 98–105.
    [9] STOLYAROV V V, ZHU Y T, LOWE T C, et al. Microstructure and properties of pure Ti processed by ECAP and cold extrusion [J]. Materials Science and Engineering A, 2001, 303(1/2): 82–89.
    [10] WANG Y C, LANGDON T G. Influence of phase volume fractions on the processing of a Ti-6Al-4V alloy by high-pressure torsion [J]. Materials Science and Engineering A, 2013, 559: 861–867. doi: 10.1016/j.msea.2012.09.034
    [11] BEEN J, GRAUMAN J S. Titanium and titanium alloys [C]//REVIE R W. Uhlig’s Corrosion Handbook. Hoboken, NJ: John Wiley & Sons Inc., 2011: 861–878.
    [12] ZHAO S, PENG Q, LI H, et al. Effects of super-high pressure on microstructures, nano-mechanical behaviors and corrosion properties of Mg-Al alloys [J]. Journal of Alloys and Compounds, 2014, 584: 56–62. doi: 10.1016/j.jallcom.2013.09.026
    [13] SIKKA S K, VOHRA Y K, CHIDAMBARAM R. Omega phase in materials [J]. Progress in Materials Science, 1982, 27(3/4): 245–310.
    [14] WANG Z X, LI F Y, PAN M X, et al. Effects of high pressure on the nucleation of Cu60Zr20Hf10Ti10 bulk metallic glass [J]. Journal of Alloys and Compounds, 2005, 388(2): 262–265. doi: 10.1016/j.jallcom.2004.07.025
    [15] SWIDERSKA-SRODA A, KALISZ G, PALOSZ B, et al. SiC nano-ceramics sintered under high-pressure [J]. Reviews on Advanced Materials Science, 2008, 18: 422–424.
    [16] HUANG Q, YU D, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250. doi: 10.1038/nature13381
    [17] ERRANDONEA D, MENG Y, SOMAYAZULU M, et al. Pressure-induced αω transition in titanium metal: a systematic study of the effects of uniaxial stress [J]. Physica B: Condensed Matter, 2005, 355(1/2/3/4): 116–125. doi: 10.1016/j.physb.2004.10.030
    [18] WANG H, ZHU D, ZOU C, et al. Evolution of the microstructure and nanohardness of Ti-48 at.% Al alloy solidified under high pressure [J]. Materials & Design, 2012, 34: 488–493.
    [19] JAYARAMAN A, KLEMENT JR W, KENNEDY G C. Solid-solid transitions in titanium and zirconium at high pressures [J]. Physical Review, 1963, 131(2): 644. doi: 10.1103/PhysRev.131.644
    [20] BERRAHMOUNE M R, BERVEILLER S, INAL K, et al. Analysis of the martensitic transformation at various scales in TRIP steel [J]. Materials Science and Engineering A, 2004, 378(1/2): 304–307. doi: 10.1016/j.msea.2003.10.372
    [21] HALEVY I, ZAMIR G, WINTERROSE M, et al. Crystallographic structure of Ti-6Al-4V, Ti-HP and Ti-CP under high-pressure [C]//Journal of Physics: Conference Series, 2010, 215(1): 12–13.
    [22] TAYA M, LULAY K E, LLOYD D J. Strengthening of a particulate metal matrix composite by quenching [J]. Acta Metallurgica et Materialia, 1991, 39(1): 73–87. doi: 10.1016/0956-7151(91)90329-Y
    [23] WANG N, WEI B. Rapid solidification behaviour of Ag-Cu-Ge ternary eutectic alloy [J]. Materials Science and Engineering A, 2001, 307(1/2): 80–90. doi: 10.1016/S0921-5093(00)01954-7
    [24] GOODWIN P N, QUIMBY E H, MORGAN R I I. Physical foundations of radiology [J]. American Journal of Physical Medicine & Rehabilitation, 1971, 50(1): 47.
    [25] EKIMOV E A, SUETIN N V, POPOVICH A F, et al. Thermal conductivity of diamond composites sintered under high pressures [J]. Diamond and Related Materials, 2008, 17(4/5): 838–843. doi: 10.1016/j.diamond.2007.12.051
    [26] LIU Y. Lamellar spacing and mechanical property of undercooled Ti-45Al-2Cr-2Nb alloy [J]. Materials Letters, 2003, 57(15): 2262–2266. doi: 10.1016/S0167-577X(02)01207-7
    [27] ZHANG X Z, KNOTT J F. Cleavage fracture in bainitic and martensitic microstructures [J]. Acta Materialia, 1999, 47(12): 3483–3495. doi: 10.1016/S1359-6454(99)00200-1
    [28] GU Y, ZENG F, QI Y, et al. Tensile creep behavior of heat-treated TC11 titanium alloy at 450–550 ℃ [J]. Materials Science and Engineering A, 2013, 575: 74–85. doi: 10.1016/j.msea.2013.03.038
    [29] RAJAN T V, SHARMA C P, SHARMA A. Heat treatment: principles and techniques [M]. 2nd ed. New Delhi, India: Prentice Hall India Learning Private Limited, 2010.
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  7575
  • HTML全文浏览量:  2604
  • PDF下载量:  21
出版历程
  • 收稿日期:  2019-10-14
  • 修回日期:  2019-11-05

目录

    /

    返回文章
    返回