C2H4/N2O预混气体的爆轰性能与火焰淬熄特性

李玉艳 蒋榕培 李智鹏 徐森 潘峰 解立峰

李玉艳, 蒋榕培, 李智鹏, 徐森, 潘峰, 解立峰. C2H4/N2O预混气体的爆轰性能与火焰淬熄特性[J]. 高压物理学报, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845
引用本文: 李玉艳, 蒋榕培, 李智鹏, 徐森, 潘峰, 解立峰. C2H4/N2O预混气体的爆轰性能与火焰淬熄特性[J]. 高压物理学报, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845
LI Yuyan, JIANG Rongpei, LI Zhipeng, XU Sen, PAN Feng, XIE Lifeng. Detonation and Quenching Characteristics of Premixed C2H4/N2O[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845
Citation: LI Yuyan, JIANG Rongpei, LI Zhipeng, XU Sen, PAN Feng, XIE Lifeng. Detonation and Quenching Characteristics of Premixed C2H4/N2O[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 045201. doi: 10.11858/gywlxb.20190845

C2H4/N2O预混气体的爆轰性能与火焰淬熄特性

doi: 10.11858/gywlxb.20190845
详细信息
    作者简介:

    李玉艳(1985-),女,博士研究生,主要从事推进剂安全性能研究. E-mail:lyy.piao@163.com

    通讯作者:

    徐 森(1981-),男,博士,副教授,主要从事含能材料研究. E-mail:pfhycc@163.com

  • 中图分类号: O643.2; TJ55

Detonation and Quenching Characteristics of Premixed C2H4/N2O

  • 摘要: 采用自制的燃爆实验装置对C2H4/N2O预混气体的爆轰性能与火焰淬熄特性进行了实验研究。结果表明:在大直径有机玻璃管中预混气体均经历了爆燃转爆轰过程,点火初期火焰速度及加速度在内径为5、10和15 mm的管道中依次减小;预混气体中加入CO2(2.4%,质量分数)后,火焰加速进程明显延缓,点火初期处于稳定燃烧阶段;预混气体的稳定爆速为2 207 m/s,爆压为3.92 MPa,与理论值一致;常压下预混火焰在小直径不锈钢管中的临界淬熄管径为0.5~0.7 mm,预混气体火焰传播速度越大,管径越大,淬熄越困难。依据淬熄管径、湍流火焰速度和淬熄管道长度的关系,可计算防回火管道的有效长度,从而为防回火装置设计提供参考。

     

  • 图  有机玻璃管C4示意图(单位:mm)

    Figure  1.  Schematic of the PMMA channel C4 (Unit:mm)

    图  组合管道示意图(单位:mm)

    Figure  2.  Schematic of the combination channel (Unit:mm)

    图  不同管径管道中火焰阵面传播速度随时间变化曲线

    Figure  3.  Flame speed as a function of time in channels with various diameters

    图  不同管径管道中火焰加速度随时间的变化曲线

    Figure  4.  Flame acceleration as a function of time in channels with various diameters

    图  C1管中C2H4/N2O和C2H4/N2O/CO2的火焰传播速度随时间变化曲线

    Figure  5.  Flame speed of C2H4/N2O and C2H4/N2O/CO2 as a function of time in the channel C1

    图  管道C4中火焰前端速度随时间变化曲线

    Figure  6.  Flame speed as a function of time in the channel C4

    图  管道C4中8个压力传感器记录的压力曲线

    Figure  7.  Pressure profiles versus time obtained by eight pressure gauges in the channel C4

    图  压力峰值变化曲线

    Figure  8.  Plots of maximum overpressure obtained in the channel C4

    图  火焰传播速度、冲击波速度和C-J速度曲线

    Figure  9.  Flame speed, shock wave velocity and C-J velocity curves

    图  10  组合管道中火焰传播实测图像

    Figure  10.  Image of the flame propagation in combination channels

    图  11  组合管道中预混火焰淬熄情况

    Figure  11.  Diagram of the flame behaviors in combination channels

    图  12  加速管长度不同时火焰传播速度随时间变化曲线

    Figure  12.  Flame acceleration process as a function of time in accelerating channels with different lengths

    表  1  有机玻璃管道尺寸

    Table  1.   Geometrical characteristics of PMMA channels

    Channell/mmd/mml/dV/mL
    C1, smooth1 400 5280 27.5
    C2, smooth1 40010140109.9
    C3, smooth1 40015 93247.3
    C4, rough2 00015133112.5
     Note: l is the length of the PMMA channel; d is the inner diameter of the PMMA channel; V is the volume of the channel.
    下载: 导出CSV
  • [1] 朱成财, 韩伟, 于忻立, 等. 氧化亚氮基单元复合推进剂技术研究述评 [J]. 火箭推进, 2016, 42(2): 79–85. doi: 10.3969/j.issn.1672-9374.2016.02.015

    ZHU C C, HAN W, YU X L, et al. Review of nitrous-oxide-based composite monopropellants technology [J]. Journal of Rocket Propulsion, 2016, 42(2): 79–85. doi: 10.3969/j.issn.1672-9374.2016.02.015
    [2] 宋长青, 徐万武, 张家奇, 等. 氧化亚氮推进技术研究进展 [J]. 火箭推进, 2014, 40(2): 7–15. doi: 10.3969/j.issn.1672-9374.2014.02.002

    SONG C Q, XU W W, ZHANG J Q, et al. Research progress of nitrous oxide propulsion technology [J]. Journal of Rocket Propulsion, 2014, 40(2): 7–15. doi: 10.3969/j.issn.1672-9374.2014.02.002
    [3] MUNGAS G, VOZOFF M, RISHIKOF B. NOFBXTM: a new non-toxic, “green” propulsion technology with high performance and low cost [C]//63rd International Astronautical Congress. Naples, Italy, 2012.
    [4] GOHARDANI A S, STANOJEV J, DEMAIRE A, et al. Green space propulsion: opportunities and prospects [J]. Progress in Aerospace Sciences, 2014, 71: 128–149. doi: 10.1016/j.paerosci.2014.08.001
    [5] ROY G D, FROLOV S M, BORISOV A A. Pulse detonation propulsion: challenges, current status, and future perspective [J]. Progress in Energy and Combustion Science, 2004, 30(6): 545–672. doi: 10.1016/j.pecs.2004.05.001
    [6] WERLINGY L, LAUCK F, FREUDENMANN D, et al. Experimental investigation of the ignition, flame propagation and flashback behavior of a premixed green propellant consisting of N2O and C2H4 [J]. Journal of Energy and Power Engineering, 2017, 11: 735–752.
    [7] MUSCAT V I, DENTON M B, SUDDENDORF R F. A Flashback-resistant burner for use with the nitrous oxide-acetylene flame [J]. Spectroscopy Letters, 1973, 6(9): 563–567. doi: 10.1080/00387017308060845
    [8] GIBBON D, BAKER A, NICOLINI D, et al. The design, development and in-flight performance of a low power resistojet thruster [C]//39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Huntsville, Alabama, 2003.
    [9] VENKATESH P B, D’ENTREMONT J, MEYER S E, et al. High-pressure combustion and deflagration-to-detonation transition in ethylene/nitrous oxide mixtures [C]//8th U.S. National Combustion Meeting. Park City, Utah, 2013: 158–165.
    [10] VENKATESH P B, GRAZIANO T J, BANE S P M, et al. Deflagration-to-detonation transition in nitrous oxide-ethylene mixtures and its application to pulsed propulsion systems [C]//55th AIAA Aerospace Sciences Meeting. Grapevine, TX, 2017: 0372.
    [11] WERLING L K, HOCHHEIMER B, BARAL A L, et al. Experimental and numerical analysis of the heat flux occurring in a nitrous oxide/ethene green propellant combustion demonstrator [J]. Journal of the American College of Surgeons, 2013, 186(5): 562–569.
    [12] HOCHHEIMER B, PERAKIS N, WERLING L, et al. Test facilities to assess properties of a nitrous oxide/ethene premixed bipropellant for satellite propulsion system [C]//5th CEAS Air & Space Conference. Delft, The Netherlands, 2014.
    [13] ZHANG B, LIU H, WANG C. Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture [J]. Applied Thermal Engineering, 2017, 127: 671–678. doi: 10.1016/j.applthermaleng.2017.08.016
    [14] MOVILEANU C, RAZUS D, MITU M, et al. Explosion of C2H4-N2O-N2 in elongated closed vessels [C]//7th European Combustion Meeting. Budapest, Hungary, 2015.
    [15] POWELL O A, PAPAS P, DREYER C. Laminar burning velocities for hydrogen-, methane-, acetylene-, and propane-nitrous oxide flames [J]. Combustion Science & Technology, 2009, 181(7): 917–936.
    [16] 李智鹏, 孙海云, 蒋榕培, 等. 乙烯-氧化亚氮层流预混燃烧过程研究 [J]. 火箭推进, 2018, 44(5): 37–42. doi: 10.3969/j.issn.1672-9374.2018.05.006

    LI Z P, SUN H Y, JIANG R P, et al. Study on premixed laminar combustion process of ethylene/nitrous oxide mixture [J]. Journal of Rocket Propulsion, 2018, 44(5): 37–42. doi: 10.3969/j.issn.1672-9374.2018.05.006
    [17] NEWMAN-LEHMAN T, GRANA R, SESHADRI K, et al. The structure and extinction of nonpremixed methane/nitrous oxide and ethane/nitrous oxide flames [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2147–2153. doi: 10.1016/j.proci.2012.05.102
    [18] 程关兵, 李俊仙, 李书明, 等. 氢气/丙烷/空气预混气体爆轰性能的实验研究 [J]. 爆炸与冲击, 2015, 35(2): 249–252. doi: 10.11883/1001-1455(2015)02-0249-06

    CHENG G B, LI J X, LI S M, et al. An experimental study on detonation characteristics of binary fuels hydrogen/propane-air mixtures [J]. Explosion and Shock Waves, 2015, 35(2): 249–252. doi: 10.11883/1001-1455(2015)02-0249-06
    [19] 张博, 白春华. H2-O2/Air直接起爆形成爆轰临界能量的预测模型 [J]. 高压物理学报, 2013, 27(5): 719–724. doi: 10.11858/gywlxb.2013.05.010

    ZHANG B, BAI C H. Theoretical prediction model of critical energy for direct detonation initiation in H2-O2/air mixtures [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 719–724. doi: 10.11858/gywlxb.2013.05.010
    [20] 王鲁庆, 马宏昊, 王波, 等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究 [J]. 高压物理学报, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687

    WANG L Q, MA H H, WANG B, et al. Detonation propagation in hydrogen/methane-air mixtures in a round tube filled with orifice plates [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 035203. doi: 10.11858/gywlxb.20170687
    [21] WU M H, BURKE M P, SON S F, et al. Flame acceleration and the transition to detonation of stoichiometric ethylene/oxygen in microscale tubes [J]. Proceedings of the Combustion Institute, 2007, 31(2): 2429–2436. doi: 10.1016/j.proci.2006.08.098
    [22] WANG C, HUANG F L, ADDAI E K, et al. Effect of concentration and obstacles on flame velocity and overpressure of methane-air mixture [J]. Journal of Loss Prevention in the Process Industries, 2016, 43: 302–310. doi: 10.1016/j.jlp.2016.05.021
    [23] ALIOU S, ASHWIN C, ABDELLAH H. Mean structure of one-dimensional unstable detonations with friction [J]. Journal of Fluid Mechanics, 2014, 743(3): 503–533.
    [24] 路长, 李毅, 潘荣锟. 管道截面对氢气/空气预混爆炸影响的实验研究 [J]. 火灾科学, 2015, 24(2): 68–74. doi: 10.3969/j.issn.1004-5309.2015.02.02

    LU C, LI Y, PAN R K. Experimental study of the duct cross section effects on the hydrogen/air premixed explosion [J]. Fire Safety Science, 2015, 24(2): 68–74. doi: 10.3969/j.issn.1004-5309.2015.02.02
    [25] 王成, 韩文虎, 宁建国. 边界层和障碍物对湍流火焰加速机理的研究 [C]//第十五届全国激波与激波管学术会议. 杭州, 2012.
    [26] LIU F, GUO H, SMALLWOOD G J. The chemical effect of CO2 replacement of N2 in air on the burning velocity of CH4 and H2 premixed flames [J]. Combustion and Flame, 2003, 133(4): 495–497. doi: 10.1016/S0010-2180(03)00019-1
    [27] PARK J, LEE K, LEE E. Effects of CO2 addition on flame structure in counter flow diffusion flame of H2/CO2/N2 fuel [J]. International Journal of Hydrogen Energy, 2001, 25(6): 469–485.
    [28] PARK J, HWANG D, CHOI J, et al. Chemical effects of CO2 addition to oxidizer and fuel streams on flame structure in H2-O2 counter flow diffusion flames [J]. International Journal of Energy Research, 2003, 27(13): 1205–1220. doi: 10.1002/er.946
    [29] POWELL O, PAPAS P. Flame structure measurements of nitric oxide in hydrocarbon-nitrous-oxide flames [J]. Journal of Propulsion & Power, 2015, 28(5): 1052–1059.
    [30] 李猛, 王宏, 陈雪莉. 复杂化学平衡应用计算程序 [J]. 兵器装备工程学报, 2010, 31(9): 132–134. doi: 10.3969/j.issn.1006-0707.2010.09.043
    [31] BABKIN V S. Filtrational combustion of gases. Present state of affairs and prospects [J]. Pure & Applied Chemistry, 1993, 65(2): 335–344.
    [32] KELLENBERGER M, CICCARELLI G. Advancements on the propagation mechanism of a detonation wave in an obstructed channel [J]. Combustion and Flame, 2018, 191: 195–209. doi: 10.1016/j.combustflame.2017.12.023
    [33] LIBERMAN M A, IVANOV M F, KIVERIN A D, et al. Deflagration-to-detonation transition in highly reactive combustible mixtures [J]. Acta Astronautica, 2010, 67(7/8): 688–701.
    [34] CHAKRAVARTHII D M K, DEVARAJAN M, SUBRAMANI S. Experimental and numerical investigation of pressure drop and heat transfer coeffcient in converging-diverging microchannel heat sink [J]. Heat and Mass Transfer, 2017, 53(7): 2265–2277. doi: 10.1007/s00231-017-1978-7
    [35] FAN A, WAN J, LIU Y, et al. Effect of bluff body shape on the blow-off limit of hydrogen/air flame in a planar micro-combustor [J]. Applied Thermal Engineering, 2014, 62(1): 13–19. doi: 10.1016/j.applthermaleng.2013.09.010
    [36] YANG S, SHY S. Global quenching of premixed CH4/air flames: effects of turbulent straining, equivalence ratio, and radiative heat loss [J]. Proceedings of the Combustion Institute, 2002, 29(2): 1841–1847. doi: 10.1016/S1540-7489(02)80223-1
    [37] YANG W, DENG C, ZHOU J, et al. Experimental and numerical investigations of hydrogen-air premixed combustion in a converging-diverging micro tube [J]. International Journal of Hydrogen Energy, 2014, 39(7): 3469–3476. doi: 10.1016/j.ijhydene.2013.12.102
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  7120
  • HTML全文浏览量:  2905
  • PDF下载量:  30
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-01-05

目录

    /

    返回文章
    返回