装药方式对铜/钢爆炸焊接界面波的影响及波形成机理

缪广红 马雷鸣 李雪交 艾九英 赵文慧 马宏昊 沈兆武

缪广红, 马雷鸣, 李雪交, 艾九英, 赵文慧, 马宏昊, 沈兆武. 装药方式对铜/钢爆炸焊接界面波的影响及波形成机理[J]. 高压物理学报, 2020, 34(2): 025203. doi: 10.11858/gywlxb.20190844
引用本文: 缪广红, 马雷鸣, 李雪交, 艾九英, 赵文慧, 马宏昊, 沈兆武. 装药方式对铜/钢爆炸焊接界面波的影响及波形成机理[J]. 高压物理学报, 2020, 34(2): 025203. doi: 10.11858/gywlxb.20190844
MIAO Guanghong, MA Leiming, LI Xuejiao, AI Jiuying, ZHAO Wenhui, MA Honghao, SHEN Zhaowu. Effect of Charge Mode on Interface Wave of Copper/Steel Explosive Welding and Wave Formation Mechanism[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025203. doi: 10.11858/gywlxb.20190844
Citation: MIAO Guanghong, MA Leiming, LI Xuejiao, AI Jiuying, ZHAO Wenhui, MA Honghao, SHEN Zhaowu. Effect of Charge Mode on Interface Wave of Copper/Steel Explosive Welding and Wave Formation Mechanism[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 025203. doi: 10.11858/gywlxb.20190844

装药方式对铜/钢爆炸焊接界面波的影响及波形成机理

doi: 10.11858/gywlxb.20190844
基金项目: 国家自然科学基金(11902003,51874267);安徽省高校自然科学基金重点项目(KJ2017A089,KJ2018A0090);高校优秀青年骨干人才国外访学研修项目(gxgwfx2019017);安徽省自然科学基金(1808085QA06)
详细信息
    作者简介:

    缪广红(1985-),男,博士,副教授,主要从事含能材料、爆炸复合及爆炸力学相关研究. E-mail:miaogh@mail.ustc.edu.cn

  • 中图分类号: O389

Effect of Charge Mode on Interface Wave of Copper/Steel Explosive Welding and Wave Formation Mechanism

  • 摘要: 为了改善爆炸焊接质量,解决高噪低效的问题,选取Cu为复板、Q235钢为基板,采用LS-DYNA软件和光滑粒子流体动力学方法分别设计了均匀布药和梯形布药方案,研究了硝铵炸药对爆炸焊接界面波的影响。均匀布药结果显示:沿着爆轰方向碰撞压力逐渐增大;炸药量越多,碰撞压力越大,界面波波形越大。梯形布药方案中,通过改变炸药起爆端和末端的高度,设计了4种方案,结果显示:梯形布药可以消除爆炸焊接界面波不均匀现象,使界面波形尺寸基本保持一致,而且节省了炸药用量;当起爆端和末端的高度分别为67.2 mm和42.0 mm时,波形效果最好。通过研究界面波的形成过程可知,SPH法模拟的界面波形成过程与复板流侵彻机理的一致性较好,证明了复板流侵彻机理解释界面波形成过程的有效性。

     

  • 图  计算模型

    Figure  1.  Computational model

    图  爆炸焊接窗口

    Figure  2.  Explosive welding window

    图  均匀布药模拟效果图

    Figure  3.  Simulation effect diagram of uniform charge

    图  关键点取样示意图

    Figure  4.  Schematic diagram of key point sampling

    图  关键点碰撞压力值折线

    Figure  5.  Line diagram of collision pressure of key points

    图  梯形装药结构示意图

    Figure  6.  Schematic diagram of ladder charge structure

    图  关键点碰撞压力值折线图

    Figure  7.  Line diagram of collision pressure of key points

    图  波形成示意图

    Figure  8.  Illustration of wave formation

    表  1  硝铵炸药的JWL状态方程参数

    Table  1.   JWL EOS parameters of ammonium nitrate explosive

    ρ/(kg·m−3)D/(m·s−1)AJ/GPaBJ/GPaR1R2ω
    8002 800132.750.4235.31.20.21
    下载: 导出CSV

    表  2  Cu和Q235钢的Johnson-Cook模型参数

    Table  2.   Parameters of Johnson-Cook model of Cu and Q235 steel

    Materialρ/(g·cm−3)G/GPaA/GPaB/GPanCmTm/KTr/K
    Cu8.96460.0900.2920.310.0251.091 356294
    Q2357.83770.7920.5100.260.0141.031 793294
    下载: 导出CSV

    表  3  Cu和Q235钢的Grüneisen方程参数

    Table  3.   Grüneisen EOS parameters of Cu and Q235 steel

    Materialc/(km·s−1)S1Γ0a
    Cu3.9401.4892.020.47
    Q2354.5691.4902.170.46
    下载: 导出CSV

    表  4  均匀布药方案关键点碰撞压力

    Table  4.   Collision pressure of key points in uniform charge scheme

    Key pointPressure/GPaKey pointPressure/GPa
    R1 = 1.0R2 = 1.5R1 = 1.0R2 = 1.5
    A10.5811.602A54.9997.086
    A21.6722.002A65.7548.576
    A34.5075.289A70.5261.031
    A44.6546.191
    下载: 导出CSV

    表  5  梯形布药方案

    Table  5.   Ladder charging scheme

    Schemea/mmb/mm
    67.258.8
    67.250.4
    67.242.0
    67.233.6
    下载: 导出CSV

    表  6  梯形布药方案关键点碰撞压力

    Table  6.   Collision pressure of key points of ladder charge scheme

    Key pointPressure/GPa
    Scheme ⅠScheme ⅡScheme ⅢScheme Ⅳ
    A11.7381.1581.6940.351
    A22.5492.5482.1411.936
    A33.8393.8303.6212.776
    A45.2307.5475.4395.665
    A57.8908.3303.4134.537
    A66.4233.5053.7312.064
    A70.7800.4310.3970.435
    下载: 导出CSV
  • [1] NASSIRI A, KINSEY B. Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian-Eulerian (ALE) [J]. Journal of Manufacturing Processes, 2016, 24: 376–381. doi: 10.1016/j.jmapro.2016.06.017
    [2] ABE A. Numerical study of the mechanism of wavy interface generation in explosive welding [J]. JSME International Journal Series B—Fluids and Thermal Engineering, 1997, 40: 395–401. doi: 10.1299/jsmeb.40.395
    [3] YUAN X, WANG W, CAO X, et al. Numerical study on the interfacial behavior of Mg/Al plate in explosive/impact welding [J]. Science & Engineering of Composite Materials, 2017, 24(6): 833–843.
    [4] TABBATAEE M, MAHMOUDI J. Finite element simulation of explosive welding [J]. Journal of Applied Physics, 2014, 24(3): 349–359.
    [5] MOUSAVI A A A, BURLEY S J, AL-HASSANI S T S. Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives [J]. International Journal of Impact Engineering, 2005, 31(6): 719–734. doi: 10.1016/j.ijimpeng.2004.03.003
    [6] MOUSAVI A A A, AL-HASSANI S T S. Simulation of wave and jet formations in explosive/impact welding [C]//ASME 7th Biennial Conference on Engineering Systems Design and Analysis. Manchester, England, 2004: 265–274.
    [7] 王宇新, 李晓杰, 孙国, 等. 无网格MPM法三维爆炸焊接数值模拟 [J]. 计算力学学报, 2013, 30(1): 34–38. doi: 10.7511/jslx201301006

    WANG Y X, LI X J, SUN G, et al. Three dimensional simulation of the explosive welding by using of the MPM [J]. Chinese Journal of Computational Mechanics, 2013, 30(1): 34–38. doi: 10.7511/jslx201301006
    [8] 刘江, 郑远远, 沈宗宝, 等. 基于SPH方法的爆炸焊接过程模拟 [J]. 焊接技术, 2013, 42(12): 17–20.

    LIU J, ZHENG Y Y, SHEN Z B, et al. Simulation of explosive welding process based on SPH method [J]. Welding Technology, 2013, 42(12): 17–20.
    [9] 周春华, 史长根, 蔡立艮, 等. 爆炸焊接布药工艺的研究 [J]. 焊接技术, 2002, 31(6): 17–18. doi: 10.3969/j.issn.1002-025X.2002.06.008

    ZHOU C H, SHI C G, CAI L G, et al. Research on dynamite-distributing technology of explosive welding [J]. Welding Technology, 2002, 31(6): 17–18. doi: 10.3969/j.issn.1002-025X.2002.06.008
    [10] 董刚, 周春华, 史长根, 等. 爆炸焊接不等厚度布药工艺 [J]. 焊接, 2004(6): 35–38. doi: 10.3969/j.issn.1001-1382.2004.06.010

    DONG G, ZHOU C H, SHI C G, et al. Unequal thickness arranging explosive technology of explosive welding [J]. Welding, 2004(6): 35–38. doi: 10.3969/j.issn.1001-1382.2004.06.010
    [11] 缪广红, 李亮, 江向阳, 等. 双面爆炸焊接的数值模拟 [J]. 高压物理学报, 2018, 32(4): 1–8. doi: 10.11858/gywlxb.20180513

    MIAO G H, LI L, JIANG X Y, et al. Numerical simulation of double sided explosive welding [J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 1–8. doi: 10.11858/gywlxb.20180513
    [12] LEE E, FINGER M, COLLINS W. JWL equation of state coefficients for high explosives [R]. Livermore, CA, USA: Lawrance Livermore National Laboratory, 1973.
    [13] LIU G R, LIU M B. 光滑粒子流体动力学——一种无网格粒子法 [M]. 韩旭, 译. 长沙: 湖南大学出版社, 2005.
    [14] 程国强, 李守新. 金属材料在高应变率下的热粘塑性本构模型 [J]. 弹道学报, 2004, 11(6): 18–22.

    CHENG G Q, LI S X. Thermal viscoplastic constitutive model of metallic materials at high strain rate [J]. Journal of Ballistics, 2004, 11(6): 18–22.
    [15] 张振逵, 吴绍尧. 用半圆柱法测定铜-钢爆炸焊接窗口及合理药量 [J]. 焊接学报, 1980(3): 17–30, 67.

    ZHANG Z K, WU S Y. Determination of explosive welding window and reasonable charge content of copper-steel by semi-cylindrical method [J]. Transactions of the China Welding Institution, 1980(3): 17–30, 67.
    [16] SUI G F, LI J S, SUN F, et al. 3D finite element simulation of explosive welding of three-layer plates [J]. Science China-Physics Mechanics & Astronomy, 2011, 54(5): 890–896.
    [17] 孙锦山, 朱建士. 理论爆轰物理 [M]. 北京: 国防工业出版社, 1995: 356–418.
    [18] MOUSAVI A A A, AL-HASSANI S T S. Finite element simulation of explosively-driven plate impact with application to explosive welding [J]. Materials & Design, 2008, 29(1): 1–19. doi: 10.1016/j.matdes.2006.12.012
    [19] 蔡立艮, 卢红标, 周春华, 等. 爆炸焊接布药工艺与微观结合界面形貌分析 [J]. 爆破, 2010, 27(1): 78–81. doi: 10.3963/j.issn.1001-487X.2010.01.021

    CAI L G, LU H B, ZHOU C H, et al. Arranging explosive technology of explosive welding and microanalysis of bonging interfaces [J]. Blasting, 2010, 27(1): 78–81. doi: 10.3963/j.issn.1001-487X.2010.01.021
    [20] 王克鸿, 张德库, 张文军. 爆炸焊接技术研究进展 [J]. 机械制造与自动化, 2011, 40(2): 1–5. doi: 10.3969/j.issn.1671-5276.2011.02.001

    WANG K H, ZHANG D K, ZHANG W J. Research progress of explosive welding technology [J]. Mechanical Manufacturing and Automation, 2011, 40(2): 1–5. doi: 10.3969/j.issn.1671-5276.2011.02.001
    [21] FINDIK F. Recent developments in explosive welding [J]. Materials & Design, 2011, 32(3): 1081–1082.
    [22] 袁晓丹. 铝-镁合金爆炸焊接层状复合界面形成机制及数值模拟 [D]. 太原: 太原理工大学, 2016.

    YUAN X D. Formation mechanism and numerical simulation of layered composite interface in explosive welding of Al-Mg alloy [D]. Taiyuan: Taiyuan University of Technology, 2016.
    [23] LI Y, WU Z. Microstructural characteristics and mechanical properties of 2205/AZ31B laminates fabricated by explosive welding [J]. Metals, 2017, 7(4): 125. doi: 10.3390/met7040125
    [24] 郑远谋. 爆炸焊接和爆炸复合材料 [M]. 北京: 国防工业出版社, 2017: 13–14.
    [25] 缪广红. 蜂窝结构炸药与双面爆炸复合的研究 [D]. 合肥: 中国科学技术大学, 2015.

    MIAO G H. Research on honeycomb structure explosives and double sided explosive cladding [D]. Hefei: University of Science and Technology of China, 2015.
    [26] 王耀华. 金属板材爆炸焊接研究与实践 [M]. 北京: 国防工业出版社, 2007.
    [27] 缪广红, 马宏昊, 沈兆武, 等. 不锈钢-普碳钢的双面爆炸复合 [J]. 爆炸与冲击, 2015, 35(4): 536–540. doi: 10.11883/1001-1455(2015)04-0536-05

    MIAO G H, MA H H, SHEN Z W, et al. Double-sided explosive recombination of stainless steel and plain carbon steel [J]. Explosion and Shock Waves, 2015, 35(4): 536–540. doi: 10.11883/1001-1455(2015)04-0536-05
    [28] WANG X, ZHENG Y, LIU H, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method [J]. Materials & Design, 2012, 35: 210–219. doi: 10.1016/j.matdes.2011.09.047
    [29] BAHRANI A S, BLACK T J, CROSSLAND B. The mechanics of wave formation in explosive welding [J]. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1967, 296(1445): 123–136.
    [30] COWAN G R, BERGMANN O R, HOLTZMAN A H. Mechanism of bond zone wave formation in explosion-clad metals [J]. Metallurgical and Materials Transactions B, 1971, 2(11): 3145–3155. doi: 10.1007/BF02814967
    [31] COWAN G R, HOLTZMAN A H. Flow configurations in colliding plates: explosive bonding [J]. Journal of Applied Physics, 1963, 34(4): 928–939. doi: 10.1063/1.1729565
    [32] KOWALICK J F, HAY D R. A mechanism of explosive bonding [J]. Metallurgical and Materials Transactions B, 1971, 2(7): 1953–1958.
    [33] REID S R, SHERIFF N H S. Prediction of the wave length of interface waves in symmetric explosive welding [J]. Journal of Mechanical Engineering Science, 1980, 18(2): 87–94.
    [34] GODUNOV S K, DERIBAS A A, ZABRADINA V. Hydrodynamic effect in colliding solids [J]. Computational Physics, 1970, 5: 517–539. doi: 10.1016/0021-9991(70)90078-1
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  8517
  • HTML全文浏览量:  2951
  • PDF下载量:  36
出版历程
  • 收稿日期:  2019-10-08
  • 修回日期:  2019-11-11

目录

    /

    返回文章
    返回